@article{ZNSL_2011_390_a2,
author = {G. Carlier and F. Santambrogio},
title = {A continuous theory of traffic congestion and {Wardrop} equilibria},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {69--91},
year = {2011},
volume = {390},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a2/}
}
G. Carlier; F. Santambrogio. A continuous theory of traffic congestion and Wardrop equilibria. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 69-91. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a2/
[1] M. Beckmann, “A continuous model of transportation”, Econometrica, 20 (1952), 643–660 | DOI | MR | Zbl
[2] M. Beckmann, C. McGuire, C. Winsten, Studies in Economics of Transportation, Yale University Press, New Haven, 1956
[3] J.-B. Baillon, G. Carlier, From discrete to continuous Wardrop equilibria, in preparation
[4] J.-B. Baillon, R. Cominetti, “Markovian Traffic Equilibrium”, Math. Prog., 111:1–2, Ser. B (2008), 33–56 | MR | Zbl
[5] F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, “Numerical Approximation of Continuous Traffic Congestion Equilibria”, Netw. Heterog. Media, 4:3 (2009), 605–623 | DOI | MR | Zbl
[6] F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, “Derivatives with Respect to Metrics and Applications: Subgradient Marching Algorithm”, Numerische. Mathematik (to appear)
[7] M. Bernot, V. Caselles, J.-M. Morel, Optimal transportation networks, Models and Theory, Lect. Notes Math., 1955, Springer, 2008 | MR
[8] L. Brasco, G. Carlier, F. Santambrogio, “Congested traffic dynamics, weak flows and very degenerate elliptic equations”, J. Math. Pures et Appliquées (9), 93:6 (2010), 652–671 | DOI | MR | Zbl
[9] Y. Brenier, “The least action principle and the related concept of generalized flows for incompressible perfect fluids”, J. Amer. Mat. Soc., 2 (1989), 225–255 | DOI | MR | Zbl
[10] G. Carlier, C. Jimenez, F. Santambrogio, “Optimal transportation with traffic congestion and Wardrop equilibria”, SIAM J. Control Optim., 47 (2008), 1330–1350 | DOI | MR | Zbl
[11] B. Dacorogna, J. Moser, “On a partial differential equation involving the Jacobian determinant”, Annales de l'I. H. P. Analyse non linéaire, 7 (1990), 1–26 | MR | Zbl
[12] L. De Pascale, A. Pratelli, “Regularity properties for Monge transport density and for solutions of some shape optimization problem”, Calc. Var. Partial Differential Equations, 14:3 (2002), 249–274 | DOI | MR | Zbl
[13] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl
[14] J.-M. Lasry, P.-L. Lions, “Mean-Field Games”, Japan. J. Math., 2 (2007), 229–260 | DOI | MR | Zbl
[15] J. Moser, “On the volume elements on a manifold”, Trans. Am. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl
[16] T. Roughgarden, Selfish Routing and the Price of Anarchy, MIT Press, 2005
[17] E. Rouy, A. Tourin, “A viscosity solution approach to shape from shading”, SIAM Journal on Numerical Analysis, 29 (1992), 867–884 | DOI | MR | Zbl
[18] F. Santambrogio, “Absolute continuity and summability of transport densities: simpler proofs and new estimates”, Calc. Var. PDEs, 36 (2009), 343–354 | DOI | MR | Zbl
[19] F. Santambrogio, V. Vespri, “Continuity in two dimensions for a very degenerate elliptic equation”, Nonlinear Analysis: Theory, Methods Applications, 73:12, December (2010), 3832–3841 | DOI | MR | Zbl
[20] C. Villani, Topics in optimal transportation, AMS, 200 | MR
[21] C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009 | MR
[22] J. G. Wardrop, “Some theoretical aspects of road traffic research”, Proc. Inst. Civ. Eng., 2 (1952), 325–378