A continuous theory of traffic congestion and Wardrop equilibria
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 69-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the classical Monge–Kantorovich problem, the transportation cost only depends on the amount of mass sent from sources to destinations and not on the paths followed by each particle forming this mass. Thus, it does not allow for congestion effects, which depend instead on the proportion of mass passing through a same point or on a same path. Usually the travelling cost (or time) of a path depends on “how crowded” this path is. Starting from a simple network model, we shall define equilibria in the presence of congestion. We will then extend this theory to the continuous setting mainly following the recent papers [8, 10]. After an introduction with almost no mathematical details, we will give a survey of the main features of this theory.
@article{ZNSL_2011_390_a2,
     author = {G. Carlier and F. Santambrogio},
     title = {A continuous theory of traffic congestion and {Wardrop} equilibria},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--91},
     year = {2011},
     volume = {390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a2/}
}
TY  - JOUR
AU  - G. Carlier
AU  - F. Santambrogio
TI  - A continuous theory of traffic congestion and Wardrop equilibria
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 69
EP  - 91
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a2/
LA  - en
ID  - ZNSL_2011_390_a2
ER  - 
%0 Journal Article
%A G. Carlier
%A F. Santambrogio
%T A continuous theory of traffic congestion and Wardrop equilibria
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 69-91
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a2/
%G en
%F ZNSL_2011_390_a2
G. Carlier; F. Santambrogio. A continuous theory of traffic congestion and Wardrop equilibria. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 69-91. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a2/

[1] M. Beckmann, “A continuous model of transportation”, Econometrica, 20 (1952), 643–660 | DOI | MR | Zbl

[2] M. Beckmann, C. McGuire, C. Winsten, Studies in Economics of Transportation, Yale University Press, New Haven, 1956

[3] J.-B. Baillon, G. Carlier, From discrete to continuous Wardrop equilibria, in preparation

[4] J.-B. Baillon, R. Cominetti, “Markovian Traffic Equilibrium”, Math. Prog., 111:1–2, Ser. B (2008), 33–56 | MR | Zbl

[5] F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, “Numerical Approximation of Continuous Traffic Congestion Equilibria”, Netw. Heterog. Media, 4:3 (2009), 605–623 | DOI | MR | Zbl

[6] F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, “Derivatives with Respect to Metrics and Applications: Subgradient Marching Algorithm”, Numerische. Mathematik (to appear)

[7] M. Bernot, V. Caselles, J.-M. Morel, Optimal transportation networks, Models and Theory, Lect. Notes Math., 1955, Springer, 2008 | MR

[8] L. Brasco, G. Carlier, F. Santambrogio, “Congested traffic dynamics, weak flows and very degenerate elliptic equations”, J. Math. Pures et Appliquées (9), 93:6 (2010), 652–671 | DOI | MR | Zbl

[9] Y. Brenier, “The least action principle and the related concept of generalized flows for incompressible perfect fluids”, J. Amer. Mat. Soc., 2 (1989), 225–255 | DOI | MR | Zbl

[10] G. Carlier, C. Jimenez, F. Santambrogio, “Optimal transportation with traffic congestion and Wardrop equilibria”, SIAM J. Control Optim., 47 (2008), 1330–1350 | DOI | MR | Zbl

[11] B. Dacorogna, J. Moser, “On a partial differential equation involving the Jacobian determinant”, Annales de l'I. H. P. Analyse non linéaire, 7 (1990), 1–26 | MR | Zbl

[12] L. De Pascale, A. Pratelli, “Regularity properties for Monge transport density and for solutions of some shape optimization problem”, Calc. Var. Partial Differential Equations, 14:3 (2002), 249–274 | DOI | MR | Zbl

[13] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl

[14] J.-M. Lasry, P.-L. Lions, “Mean-Field Games”, Japan. J. Math., 2 (2007), 229–260 | DOI | MR | Zbl

[15] J. Moser, “On the volume elements on a manifold”, Trans. Am. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl

[16] T. Roughgarden, Selfish Routing and the Price of Anarchy, MIT Press, 2005

[17] E. Rouy, A. Tourin, “A viscosity solution approach to shape from shading”, SIAM Journal on Numerical Analysis, 29 (1992), 867–884 | DOI | MR | Zbl

[18] F. Santambrogio, “Absolute continuity and summability of transport densities: simpler proofs and new estimates”, Calc. Var. PDEs, 36 (2009), 343–354 | DOI | MR | Zbl

[19] F. Santambrogio, V. Vespri, “Continuity in two dimensions for a very degenerate elliptic equation”, Nonlinear Analysis: Theory, Methods Applications, 73:12, December (2010), 3832–3841 | DOI | MR | Zbl

[20] C. Villani, Topics in optimal transportation, AMS, 200 | MR

[21] C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009 | MR

[22] J. G. Wardrop, “Some theoretical aspects of road traffic research”, Proc. Inst. Civ. Eng., 2 (1952), 325–378