An improvement of the complexity bound for solving systems of polynomial equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 299-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1984 the author suggested an algorithm for solving systems of polynomial equations. At present we modify it and improve bounds for its complexity, degrees and lengths of coefficients from the ground field of the elements constructed by this algorithm.
@article{ZNSL_2011_390_a11,
     author = {A. L. Chistov},
     title = {An improvement of the complexity bound for solving systems of polynomial equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {299--306},
     year = {2011},
     volume = {390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a11/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - An improvement of the complexity bound for solving systems of polynomial equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 299
EP  - 306
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a11/
LA  - en
ID  - ZNSL_2011_390_a11
ER  - 
%0 Journal Article
%A A. L. Chistov
%T An improvement of the complexity bound for solving systems of polynomial equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 299-306
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a11/
%G en
%F ZNSL_2011_390_a11
A. L. Chistov. An improvement of the complexity bound for solving systems of polynomial equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 299-306. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a11/

[1] A. L. Chistov, “Polynomial complexity algorithm for factoring polynomials and constructing components of a variety in subexponential time”, Zap. Nauchn. Semin. LOMI, 137, 1984, 124–188 | MR | Zbl

[2] A. L. Chistov, “Efficient smooth stratification of an algebraic variety in zero – characteristic and its applications”, Zap. Nauchn. Semin. POMI, 266, 2000, 254–311 | MR | Zbl

[3] A. L. Chistov, “Efficient construction of local parameters of irreducible components of an algebraic variety in nonzero characteristic”, Zap. Nauchn. Semin. POMI, 326, 2005, 248–278 | MR | Zbl

[4] A. L. Chistov, “Polynomial-time algorithms for a new model of representation of algebraic varieties (in characteristic zero)”, Zap. Nauchn. Semin. POMI, 378, 2010, 133–170 | MR