@article{ZNSL_2011_390_a10,
author = {N. V. Tsilevich},
title = {On the behavior of the periodic {Coxeter} {Laplacian} in some representations related to the antiferromagnetic asymptotic mode and continual limits},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {286--298},
year = {2011},
volume = {390},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/}
}
TY - JOUR AU - N. V. Tsilevich TI - On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 286 EP - 298 VL - 390 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/ LA - en ID - ZNSL_2011_390_a10 ER -
%0 Journal Article %A N. V. Tsilevich %T On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 286-298 %V 390 %U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/ %G en %F ZNSL_2011_390_a10
N. V. Tsilevich. On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 286-298. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/
[1] L. Babai, “Spectra of Cayley graphs”, J. Combin. Theory B, 27 (1979), 180–189 | DOI | MR | Zbl
[2] Yu. A. Izyumov, Yu. N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems, Consultants Bureau, New York, 1988 | MR
[3] E. Mukhin, V. Tarasov, A. Varchenko, Bethe subalgebras of the group algebra of the symmetric group, 2010, arXiv: 1004.4248v1
[4] L. A. Takhtadzhyan, L. D. Faddeev, “The spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, Zap. Nauchn. Semin. LOMI, 109, 1981, 134–178 | MR | Zbl
[5] N. V. Tsilevich, “Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case”, Zap. Nauchn. Semin. POMI, 378, 2010, 111–132 | MR
[6] N. V. Tsilevich, A. M. Vershik, “Induced representations of the infinite symmetric group”, Pure Appl. Math. Quart., 3:4 (2007), 1005–1026 | DOI | MR | Zbl
[7] N. V. Tsilevich, A. M. Vershik, “On different models of representations of the infinite symmetric group”, Adv. Appl. Math., 37 (2006), 526–540 | DOI | MR | Zbl
[8] A. M. Vershik, S. V. Kerov, “Asymptotic theory of the characters of a symmetric group”, Funkts. Anal. i Prilozhen., 15:4 (1981), 15–27 | MR | Zbl
[9] A. M. Vershik, S. V. Kerov, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the theory of $\mathrm K_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, eds. A. M. Vershik, D. P. Zhelobenko, Gordon and Breach, 1990, 39–117 | MR | Zbl