On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 286-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider some problems related to the asymptotic behavior of the so-called periodic Coxeter Laplacian (a distinguished operator in the group algebra of the symmetric group essentially coinciding with the Hamiltonian of the XXX Heisenberg model of spins) in some representations corresponding to the antiferromagnetic asymptotic mode, as well as in some related continual limits.
@article{ZNSL_2011_390_a10,
     author = {N. V. Tsilevich},
     title = {On the behavior of the periodic {Coxeter} {Laplacian} in some representations related to the antiferromagnetic asymptotic mode and continual limits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {286--298},
     year = {2011},
     volume = {390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/}
}
TY  - JOUR
AU  - N. V. Tsilevich
TI  - On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 286
EP  - 298
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/
LA  - en
ID  - ZNSL_2011_390_a10
ER  - 
%0 Journal Article
%A N. V. Tsilevich
%T On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 286-298
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/
%G en
%F ZNSL_2011_390_a10
N. V. Tsilevich. On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 286-298. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a10/

[1] L. Babai, “Spectra of Cayley graphs”, J. Combin. Theory B, 27 (1979), 180–189 | DOI | MR | Zbl

[2] Yu. A. Izyumov, Yu. N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems, Consultants Bureau, New York, 1988 | MR

[3] E. Mukhin, V. Tarasov, A. Varchenko, Bethe subalgebras of the group algebra of the symmetric group, 2010, arXiv: 1004.4248v1

[4] L. A. Takhtadzhyan, L. D. Faddeev, “The spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, Zap. Nauchn. Semin. LOMI, 109, 1981, 134–178 | MR | Zbl

[5] N. V. Tsilevich, “Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case”, Zap. Nauchn. Semin. POMI, 378, 2010, 111–132 | MR

[6] N. V. Tsilevich, A. M. Vershik, “Induced representations of the infinite symmetric group”, Pure Appl. Math. Quart., 3:4 (2007), 1005–1026 | DOI | MR | Zbl

[7] N. V. Tsilevich, A. M. Vershik, “On different models of representations of the infinite symmetric group”, Adv. Appl. Math., 37 (2006), 526–540 | DOI | MR | Zbl

[8] A. M. Vershik, S. V. Kerov, “Asymptotic theory of the characters of a symmetric group”, Funkts. Anal. i Prilozhen., 15:4 (1981), 15–27 | MR | Zbl

[9] A. M. Vershik, S. V. Kerov, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the theory of $\mathrm K_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, eds. A. M. Vershik, D. P. Zhelobenko, Gordon and Breach, 1990, 39–117 | MR | Zbl