Minimum-weight perfect matching for non-intrinsic distances on the line
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 52-68
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a minimum-weight perfect matching problem on the line and establish a “bottom-up” recursion relation for weights of partial minimum-weight matchings.
			
            
            
            
          
        
      @article{ZNSL_2011_390_a1,
     author = {J. Delon and J. Salomon and A. Sobolevski},
     title = {Minimum-weight perfect matching for non-intrinsic distances on the line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--68},
     publisher = {mathdoc},
     volume = {390},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a1/}
}
                      
                      
                    TY - JOUR AU - J. Delon AU - J. Salomon AU - A. Sobolevski TI - Minimum-weight perfect matching for non-intrinsic distances on the line JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 52 EP - 68 VL - 390 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a1/ LA - en ID - ZNSL_2011_390_a1 ER -
J. Delon; J. Salomon; A. Sobolevski. Minimum-weight perfect matching for non-intrinsic distances on the line. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 52-68. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a1/