Minimum-weight perfect matching for non-intrinsic distances on the line
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 52-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a minimum-weight perfect matching problem on the line and establish a “bottom-up” recursion relation for weights of partial minimum-weight matchings.
@article{ZNSL_2011_390_a1,
     author = {J. Delon and J. Salomon and A. Sobolevski},
     title = {Minimum-weight perfect matching for non-intrinsic distances on the line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--68},
     publisher = {mathdoc},
     volume = {390},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a1/}
}
TY  - JOUR
AU  - J. Delon
AU  - J. Salomon
AU  - A. Sobolevski
TI  - Minimum-weight perfect matching for non-intrinsic distances on the line
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 52
EP  - 68
VL  - 390
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a1/
LA  - en
ID  - ZNSL_2011_390_a1
ER  - 
%0 Journal Article
%A J. Delon
%A J. Salomon
%A A. Sobolevski
%T Minimum-weight perfect matching for non-intrinsic distances on the line
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 52-68
%V 390
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a1/
%G en
%F ZNSL_2011_390_a1
J. Delon; J. Salomon; A. Sobolevski. Minimum-weight perfect matching for non-intrinsic distances on the line. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 52-68. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a1/