A survey on dynamical transport distances
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 5-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we review some transport models based on the continuity equation, starting with the so-called Benamou–Brenier formula, which is nothing but a fluid mechanics reformulation of the Monge–Kantorovich problem with cost $c(x,y)=|x-y|^2$. We discuss some of its applications (gradient flows, sharp functional inequalities ...), as well as some variants and generalizations to dynamical transport problems, where interaction effects among mass particles are considered.
@article{ZNSL_2011_390_a0,
     author = {L. Brasco},
     title = {A survey on dynamical transport distances},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--51},
     year = {2011},
     volume = {390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/}
}
TY  - JOUR
AU  - L. Brasco
TI  - A survey on dynamical transport distances
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 51
VL  - 390
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/
LA  - en
ID  - ZNSL_2011_390_a0
ER  - 
%0 Journal Article
%A L. Brasco
%T A survey on dynamical transport distances
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-51
%V 390
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/
%G en
%F ZNSL_2011_390_a0
L. Brasco. A survey on dynamical transport distances. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 5-51. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/

[1] M. Agueh, N. Ghoussoub, X. Kang, “Geometric inequalities via a general comparison principle for interacting gases”, Geom. Funct. Anal., 14 (2004), 215–244 | DOI | MR | Zbl

[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measure, Lectures in Mathematics ETH Zürich, Second edition, Birkhäuser Verlag, Basel, 2008 | MR | Zbl

[3] F. Andreu, V. Caselles, J. M. Mazón, “Some regularity results on the “relativistic” heat equation”, J. Differential Equations, 245 (2008), 3639–3663 | DOI | MR | Zbl

[4] W. Beckner, “Geometric proof of Nash's inequality”, Internat. Math. Res. Notices, 1998:3 (1998), 67–71 | DOI | MR | Zbl

[5] J.-D. Benamou, Y. Brenier, “A computational Fluid Mechanics solution to the Monge–Kantorovich mass transfer problem”, Numer. Math., 84 (2000), 375–393 | DOI | MR | Zbl

[6] M. Bernot, V. Caselles, J.-M. Morel, “Traffic plans”, Publ. Mat., 49 (2005), 417–451 | DOI | MR | Zbl

[7] M. Bernot, V. Caselles, J.-M. Morel, “The structure of branched transportation networks”, Calc. Var. Partial Differential Equations, 2 (2008), 279–317 | DOI | MR

[8] M. Bernot, V. Caselles, J.-M. Morel, Optimal transportation networks. Models and theory, Lecture Notes in Math., 1955, Springer-Verlag, Berlin, 2009 | MR | Zbl

[9] M. Bernot, A. Figalli, “Synchronized traffic plans and stability of optima”, ESAIM Control Optim. Calc. Var., 14 (2008), 864–878 | DOI | MR | Zbl

[10] G. Bouchitté, G. Buttazzo, “New lower semicontinuity results for nonconvex functionals defined on measures”, Nonlinear Anal., 15 (1990), 679–692 | DOI | MR | Zbl

[11] Y. Brenier, “Extended Monge–Kantorovich theory”, Optimal transportation and applications, Lecture Notes in Math., 1813, Springer, Berlin, 2003, 91–121 | DOI | MR

[12] A. Brancolini, G. Buttazzo, F. Santambrogio, “Path functionals over Wasserstein spaces”, J. Eur. Math. Soc., 8 (2006), 415–434 | DOI | MR | Zbl

[13] L. Brasco, G. Buttazzo, F. Santambrogio, A Benamou–Brenier approach to branched transport, Submitted, 2010 available at http://cvgmt.sns.it/people/brasco | MR

[14] L. Brasco, F. Santambrogio, “An equivalent path functional formulation of branched transportation problems”, Discr. Cont. Dyn. Syst., 29:3 (2011), 845–871 available at http://cvgmt.sns.it/people/brasco | DOI | MR | Zbl

[15] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics Series, 207, Longman Scientific Technical, Harlow, 1989 | MR | Zbl

[16] G. Buttazzo, C. Jimenez, E. Oudet, “An optimization problem for mass transportation with congested dynamics”, SIAM J. Control Optim., 48 (2009), 1961–1976 | DOI | MR | Zbl

[17] J. A. Carrillo, S. Lisini, G. Savaré, D. Slepcěv, “Nonlinear mobility continuity equations and generalized displacement convexity”, J. Funct. Anal., 258 (2010), 1273–1309 | DOI | MR | Zbl

[18] D. Cordero-Erausquin, B. Nazaret, C. Villani, “A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities”, Adv. Math., 182 (2004), 307–332 | DOI | MR | Zbl

[19] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel, Chapitres I à IV, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XV. Actualités Scientifiques et Industrielles, 1372, Édition entièrement refondue, Hermann, Paris, 1975 (French) | MR | Zbl

[20] M. Del Pino, J. Dolbeault, “Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions”, J. Math. Pures Appl., 81 (2002), 847–875 | DOI | MR | Zbl

[21] J. Dolbeault, B. Nazaret, G. Savaré, “A new class of transport distances between measures”, Calc. Var. Partial Differential Equations, 34 (2009), 193–231 | DOI | MR | Zbl

[22] E. N. Gilbert, “Minimum cost communication networks”, Bell System Tech. J., 46 (1967), 2209–2227 | DOI

[23] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97 (1975), 1061–1083 | DOI | MR

[24] T. Hillen, K. J. Painter, “A user's guide to PDE models for chemotaxis”, J. Math. Biol., 58 (2009), 183–217 | DOI | MR | Zbl

[25] R. Jordan, D. Kinderlehrer, F. Otto, “The variational formulation of the Fokker–Planck equation”, SIAM J. Math. Anal., 29 (1998), 1–17 | DOI | MR | Zbl

[26] J. M. Lasry, P.-L. Lions, “Mean field games”, Japan J. Math., 2 (2007), 229–260 | DOI | MR | Zbl

[27] S. Lisini, “Characterization of absolutely continuous curves in Wasserstein spaces”, Calc. Var. Partial Differential Equations, 28 (2007), 85–120 | DOI | MR | Zbl

[28] S. Lisini, A. Marigonda, “On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals”, Manuscripta Math., 133 (2010), 197–224 | DOI | MR | Zbl

[29] F. Maddalena, J. M. Morel, S. Solimini, “A variational model of irrigation patterns”, Interfaces Free Bound., 5 (2003), 391–415 | DOI | MR | Zbl

[30] F. Maggi, C. Villani, “Balls have the worst best Sobolev inequalities. II. Variants and extensions”, Calc. Var. Partial Differential Equations, 31 (2008), 47–74 | DOI | MR | Zbl

[31] F. Maggi, C. Villani, “Balls have the worst best Sobolev inequalities”, J. Geom. Anal., 15 (2005), 83–121 | DOI | MR | Zbl

[32] R. McCann, “A convexity principle for interacting gases”, Adv. Math., 128 (1997), 153–179 | DOI | MR | Zbl

[33] R. McCann, M. Puel, “Constructing a relativistic heat flow by transport time steps”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2539–2580 | DOI | MR | Zbl

[34] J.-M. Morel, F. Santambrogio, “Comparison of distances between measures”, Appl. Math. Lett., 20 (2007), 427–432 | DOI | MR | Zbl

[35] B. Nazaret, “Best constant in Sobolev trace inequalities on the half space”, Nonlinear Anal., 65 (2006), 1977–1985 | DOI | MR | Zbl

[36] F. Otto, “The geometry of dissipative evolution equation: the porous medium equation”, Comm. Partial Differential Equations, 26 (2001), 101–174 | DOI | MR | Zbl

[37] F. Otto, “Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory”, Arch. Rational Mech. Anal., 141 (1998), 63–103 | DOI | MR | Zbl

[38] F. Otto, C. Villani, “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality”, J. Func. Anal., 173 (2000), 361–400 | DOI | MR | Zbl

[39] E. Paolini, E. Stepanov, “Optimal transportation networks as flat chains”, Interfaces Free Bound., 8 (2006), 393–436 | DOI | MR | Zbl

[40] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110 (1976), 353–372 | DOI | MR | Zbl

[41] C. Villani, Optimal transport. Old and new, Die Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[42] C. Villani, “Optimal transportation, dissipative PDE's and functional inequalities”, Optimal transportation and applications, Lecture Notes in Math., 1813, Springer, Berlin, 2003, 53–89 | DOI | MR | Zbl

[43] Q. Xia, “Optimal paths related to transport problems”, Commun. Contemp. Math., 5 (2003), 251–279 | DOI | MR | Zbl