A survey on dynamical transport distances
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 5-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we review some transport models based on the continuity equation, starting with the so-called Benamou–Brenier formula, which is nothing but a fluid mechanics reformulation of the Monge–Kantorovich problem with cost $c(x,y)=|x-y|^2$. We discuss some of its applications (gradient flows, sharp functional inequalities …), as well as some variants and generalizations to dynamical transport problems, where interaction effects among mass particles are considered.
@article{ZNSL_2011_390_a0,
     author = {L. Brasco},
     title = {A survey on dynamical transport distances},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--51},
     publisher = {mathdoc},
     volume = {390},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/}
}
TY  - JOUR
AU  - L. Brasco
TI  - A survey on dynamical transport distances
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 51
VL  - 390
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/
LA  - en
ID  - ZNSL_2011_390_a0
ER  - 
%0 Journal Article
%A L. Brasco
%T A survey on dynamical transport distances
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-51
%V 390
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/
%G en
%F ZNSL_2011_390_a0
L. Brasco. A survey on dynamical transport distances. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XX, Tome 390 (2011), pp. 5-51. http://geodesic.mathdoc.fr/item/ZNSL_2011_390_a0/