Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 162-190

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider uniform approximation by harmonic functions on compact subsets in $\mathbb R^3$. Under an additional assumption that an approximated function is Dini-continuous, we prove a natural analog of Vitushkin's well-known uniform approximation lemma for an individual analytic function.
@article{ZNSL_2011_389_a9,
     author = {M. Ya. Mazalov},
     title = {Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--190},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 162
EP  - 190
VL  - 389
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/
LA  - ru
ID  - ZNSL_2011_389_a9
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 162-190
%V 389
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/
%G ru
%F ZNSL_2011_389_a9
M. Ya. Mazalov. Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 162-190. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/