@article{ZNSL_2011_389_a9,
author = {M. Ya. Mazalov},
title = {Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--190},
year = {2011},
volume = {389},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/}
}
M. Ya. Mazalov. Uniform approximation by harmonic functions on compact subsets of $\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 162-190. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/
[1] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[2] A. G. Vitushkin, “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR | Zbl
[3] A. G. O'Farrell, “Uniform approximation by harmonic functions”, Lect. Notes Math., 1574, 1994, 121
[4] J. Verdera, “Removability, capacity and approximation”, NATO Adv. Sci. Int. Ser. C Math. Phys. Sci., 439, Kluwer, Dordrecht, 1994, 419–473 | MR | Zbl
[5] J. Mateu, Y. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier, 46:4 (1996), 1057–1081 | DOI | MR
[6] M. Ya. Mazalov, “O zadache ravnomernogo priblizheniya garmonicheskikh funktsii”, Algebra i analiz, 23:4 (2011), 136–178 | MR
[7] R. Harvey, J. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl
[8] M. V. Keldysh, “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | MR | Zbl
[9] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl
[10] P. V. Paramonov, “O garmonicheskikh priblizheniyakh s $C^1$-norme”, Matem. sbornik, 181:10 (1990), 1341–1365 | MR | Zbl
[11] N. N. Tarkhanov, Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl
[12] J. Verdera, “$C^m$ approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl
[13] M. Ya. Mazalov, “Kriterii ravnomernoi priblizhaemosti na proizvolnykh kompaktakh dlya reshenii ellipticheskikh uravnenii”, Matem. sbornik, 199:1 (2008), 15–46 | DOI | MR | Zbl
[14] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR