Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 162-190
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider uniform approximation by harmonic functions on compact subsets in $\mathbb R^3$. Under an additional assumption that an approximated function is Dini-continuous, we prove a natural analog of Vitushkin's well-known uniform approximation lemma for an individual analytic function.
			
            
            
            
          
        
      @article{ZNSL_2011_389_a9,
     author = {M. Ya. Mazalov},
     title = {Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--190},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/}
}
                      
                      
                    M. Ya. Mazalov. Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 162-190. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/