Uniform approximation by harmonic functions on compact subsets of $\mathbb R^3$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 162-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider uniform approximation by harmonic functions on compact subsets in $\mathbb R^3$. Under an additional assumption that an approximated function is Dini-continuous, we prove a natural analog of Vitushkin's well-known uniform approximation lemma for an individual analytic function.
@article{ZNSL_2011_389_a9,
     author = {M. Ya. Mazalov},
     title = {Uniform approximation by harmonic functions on compact subsets of~$\mathbb R^3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--190},
     year = {2011},
     volume = {389},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Uniform approximation by harmonic functions on compact subsets of $\mathbb R^3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 162
EP  - 190
VL  - 389
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/
LA  - ru
ID  - ZNSL_2011_389_a9
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Uniform approximation by harmonic functions on compact subsets of $\mathbb R^3$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 162-190
%V 389
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/
%G ru
%F ZNSL_2011_389_a9
M. Ya. Mazalov. Uniform approximation by harmonic functions on compact subsets of $\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 162-190. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a9/

[1] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[2] A. G. Vitushkin, “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR | Zbl

[3] A. G. O'Farrell, “Uniform approximation by harmonic functions”, Lect. Notes Math., 1574, 1994, 121

[4] J. Verdera, “Removability, capacity and approximation”, NATO Adv. Sci. Int. Ser. C Math. Phys. Sci., 439, Kluwer, Dordrecht, 1994, 419–473 | MR | Zbl

[5] J. Mateu, Y. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier, 46:4 (1996), 1057–1081 | DOI | MR

[6] M. Ya. Mazalov, “O zadache ravnomernogo priblizheniya garmonicheskikh funktsii”, Algebra i analiz, 23:4 (2011), 136–178 | MR

[7] R. Harvey, J. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl

[8] M. V. Keldysh, “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | MR | Zbl

[9] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl

[10] P. V. Paramonov, “O garmonicheskikh priblizheniyakh s $C^1$-norme”, Matem. sbornik, 181:10 (1990), 1341–1365 | MR | Zbl

[11] N. N. Tarkhanov, Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl

[12] J. Verdera, “$C^m$ approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[13] M. Ya. Mazalov, “Kriterii ravnomernoi priblizhaemosti na proizvolnykh kompaktakh dlya reshenii ellipticheskikh uravnenii”, Matem. sbornik, 199:1 (2008), 15–46 | DOI | MR | Zbl

[14] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR