@article{ZNSL_2011_389_a8,
author = {E. Lokharu},
title = {Gagliardo{\textendash}Nirenberg inequality for maximal functions measuring smoothness},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {143--161},
year = {2011},
volume = {389},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a8/}
}
E. Lokharu. Gagliardo–Nirenberg inequality for maximal functions measuring smoothness. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 143-161. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a8/
[1] R. DeVore, R. Sharpley, Maximal functions measuring smoothness, Memoirs Amer. Math. Soc., 47, no. 293, 1984 | DOI | MR
[2] A. Calderon, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl
[3] Y. Meyer, T. Rivière, “A partial regularity result for a class of stationary Yang–Mills fields”, Rev. Mat. Iberoamericana, 19 (2003), 195–219 | DOI | MR | Zbl
[4] A. Kalamajska, A. Milani, “Anisotropic Sobolev spaces and parabolic equations”, Ulmer Seminare über Funktionalanalysis und Differentialgleichungen, 2 (1997), 237–273
[5] A. Kalamajska, “Pointwise multiplicative inequalities and Nirenberg type estimates in weighted Sobolev spaces”, Studia Math., 108:3 (1994), 275–290 | MR | Zbl
[6] P. Strzelecki, “Gagliardo–Nirenberg inequalities with a $\mathrm{BMO}$ term”, Bull. London Math. Soc., 38 (2006), 294–300 | DOI | MR | Zbl