On the uncertainty principle for Meyer wavelets
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 131-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A sequence of Meyer wavelets is constructed. This sequence approximates uniformly the Meyer wavelet with the smallest uncertainty constant.
@article{ZNSL_2011_389_a7,
     author = {E. A. Lebedeva},
     title = {On the uncertainty principle for {Meyer} wavelets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--142},
     year = {2011},
     volume = {389},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/}
}
TY  - JOUR
AU  - E. A. Lebedeva
TI  - On the uncertainty principle for Meyer wavelets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 131
EP  - 142
VL  - 389
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/
LA  - ru
ID  - ZNSL_2011_389_a7
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%T On the uncertainty principle for Meyer wavelets
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 131-142
%V 389
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/
%G ru
%F ZNSL_2011_389_a7
E. A. Lebedeva. On the uncertainty principle for Meyer wavelets. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 131-142. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/

[1] Y. Meyer, “Principe d'incertitude, bases Hilbertiennes et algèbras d'opérateurs”, Seminaire Bourbaki, v. 1985/86, Astérisque, 145–146, Soc. Math. France, Paris, 1987, 209–223 | MR

[2] G. B. Folland, A. Sitaram, “The uncertainty principle: a mathematical survey”, J. Fourier Anal. Appl., 3 (1997), 207–238 | DOI | MR | Zbl

[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005, 614 pp. | MR

[4] F. P. Vasilev, Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[5] E. A. Lebedeva, “Minimizatsiya konstanty neopredelennosti semeistva vspleskov Meiera”, Matem. zametki, 81:4 (2007), 553–560 | DOI | MR | Zbl

[6] E. A. Lebedeva, V. Yu. Protasov, “Vspleski Meiera s naimenshei konstantoi neopredelennosti”, Matem. zametki, 84:5 (2008), 732–740 | DOI | MR | Zbl

[7] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR