On the uncertainty principle for Meyer wavelets
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 131-142

Voir la notice de l'article provenant de la source Math-Net.Ru

A sequence of Meyer wavelets is constructed. This sequence approximates uniformly the Meyer wavelet with the smallest uncertainty constant.
@article{ZNSL_2011_389_a7,
     author = {E. A. Lebedeva},
     title = {On the uncertainty principle for {Meyer} wavelets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--142},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/}
}
TY  - JOUR
AU  - E. A. Lebedeva
TI  - On the uncertainty principle for Meyer wavelets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 131
EP  - 142
VL  - 389
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/
LA  - ru
ID  - ZNSL_2011_389_a7
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%T On the uncertainty principle for Meyer wavelets
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 131-142
%V 389
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/
%G ru
%F ZNSL_2011_389_a7
E. A. Lebedeva. On the uncertainty principle for Meyer wavelets. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 131-142. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a7/