Functional calculus generated by a square pencil
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 113-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear transformation $\Upsilon$ is introduced that assigns an element of a special Banach algebra to each analytic function defined on the spectrum of the pencil $\lambda\mapsto\lambda^2E+\lambda F+H$. The transformation $\Upsilon$ maps the product of two functions into the product of two elements of the algebra. As an application, a formula for a solution of the differential equation $E\ddot x(t)+F\dot x(t)+Hx(t)=f(t)$ is given.
@article{ZNSL_2011_389_a6,
     author = {I. V. Kurbatova},
     title = {Functional calculus generated by a~square pencil},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--130},
     year = {2011},
     volume = {389},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a6/}
}
TY  - JOUR
AU  - I. V. Kurbatova
TI  - Functional calculus generated by a square pencil
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 113
EP  - 130
VL  - 389
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a6/
LA  - ru
ID  - ZNSL_2011_389_a6
ER  - 
%0 Journal Article
%A I. V. Kurbatova
%T Functional calculus generated by a square pencil
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 113-130
%V 389
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a6/
%G ru
%F ZNSL_2011_389_a6
I. V. Kurbatova. Functional calculus generated by a square pencil. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 113-130. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a6/

[1] W. Arendt, Approximation of degenerate semigroups, Birkhauser-Verlag, Basel, 2001 | MR | Zbl

[2] A. G. Baskakov, K. I. Chernyshov, “Spektralnaya teoriya lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sbornik, 193:11 (2002), 3–42 | DOI | MR | Zbl

[3] Dzh. Beiker, P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR

[4] N. Burbaki, Spektralnaya teoriya, Mir, M., 1972 | MR

[5] V. K. Ivanov, I. V. Melnikova, A. I. Filinkov, Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, Fizmatlit, M., 1995 | MR

[6] I. V. Kurbatova, “Banakhova algebra, svyazannaya s lineinym operatornym puchkom”, Mat. zametki, 86:3 (2009), 394–401 | DOI | MR | Zbl

[7] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1965 | MR | Zbl

[8] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[9] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[10] E. Khairer, S. Nërsett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[11] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[12] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962