Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 101-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove a Bernstein-type inequality involving the Bergman and Hardy norms, for rational functions in the unit disk $\mathbb D$ having at most $n$ poles all outside of $\frac1r\mathbb D$, $0. The asymptotic sharpness of this inequality is shown as $n\to\infty$ and $r\to1^-$. We apply our Bernstein-type inequality to an efficient Nevanlinna–Pick interpolation problem in the standard Dirichlet space, constrained by the $H^2$-norm.
@article{ZNSL_2011_389_a5,
     author = {R. Zarouf},
     title = {Application of {a~Bernstein-type} inequality to rational interpolation in the {Dirichlet} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--112},
     year = {2011},
     volume = {389},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/}
}
TY  - JOUR
AU  - R. Zarouf
TI  - Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 101
EP  - 112
VL  - 389
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/
LA  - en
ID  - ZNSL_2011_389_a5
ER  - 
%0 Journal Article
%A R. Zarouf
%T Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 101-112
%V 389
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/
%G en
%F ZNSL_2011_389_a5
R. Zarouf. Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 101-112. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/

[1] L. Baratchart, “Rational and meromorphic approximation in $L^p$ of the circle: system-theoretic motivations, critical points and error rates”, Computational Methods and Function Theory, eds. N. Papamichael, S. Ruscheweyh, E. Saff, World Scientific Publish. Co, 1999, 45–78 | MR | Zbl

[2] L. Baratchart, F. Wielonsky, “Rational approximation problem in the real Hardy space $H_2$ and Stieltjes integrals: a uniqueness theorem”, Constr. Approx., 9 (1993), 1–21 | DOI | MR | Zbl

[3] Math. USSR Izv., 14:2 (1980), 257–273 | DOI | MR | Zbl | Zbl

[4] K. M. Dyakonov, “Smooth functions in the range of a Hankel operator”, Indiana Univ. Math. J., 43 (1994), 805–838 | DOI | MR | Zbl

[5] R. J. Leveque, L. N. Trefethen, “On the resolvent condition in the Kreiss matrix theorem”, BIT, 24 (1984), 584–591 | DOI | MR | Zbl

[6] Russian Lekzii ob operatore sdviga, “Nauka”, Moskva, 1980 | MR | Zbl

[7] N. Nikolski, Operators, Function, and Systems: an easy reading, v. 1, Amer. Math. Soc. Monographs and Surveys, 2002

[8] Math. USSR Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl | Zbl

[9] A. A. Pekarskii, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR Sb., 52:2 (1985), 557–574 | DOI | MR | Zbl

[10] M. N. Spijker, “On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem”, BIT, 31 (1991), 551–555 | DOI | MR | Zbl

[11] R. Zarouf, “Analogs of the Kreiss resolvent condition for power bounded matrices”, Actes des journées du GDR AFHA (to appear)

[12] R. Zarouf, “Asymptotic sharpness of a Bernstein-type inequality for rational functions in $H^2$”, St. Petersburg. Math. Journal, 2011 (to appear) | MR

[13] R. Zarouf, Effective $H^\infty$ interpolation, submitted

[14] R. Zarouf, “Sharpening a result by E. B. Davies and B. Simon”, C. R. Acad. Sci. Paris, 347 (2009), 939–942 | DOI | MR | Zbl