Application of a~Bernstein-type inequality to rational interpolation in the Dirichlet space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 101-112

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a Bernstein-type inequality involving the Bergman and Hardy norms, for rational functions in the unit disk $\mathbb D$ having at most $n$ poles all outside of $\frac1r\mathbb D$, $0$. The asymptotic sharpness of this inequality is shown as $n\to\infty$ and $r\to1^-$. We apply our Bernstein-type inequality to an efficient Nevanlinna–Pick interpolation problem in the standard Dirichlet space, constrained by the $H^2$-norm.
@article{ZNSL_2011_389_a5,
     author = {R. Zarouf},
     title = {Application of {a~Bernstein-type} inequality to rational interpolation in the {Dirichlet} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/}
}
TY  - JOUR
AU  - R. Zarouf
TI  - Application of a~Bernstein-type inequality to rational interpolation in the Dirichlet space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 101
EP  - 112
VL  - 389
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/
LA  - en
ID  - ZNSL_2011_389_a5
ER  - 
%0 Journal Article
%A R. Zarouf
%T Application of a~Bernstein-type inequality to rational interpolation in the Dirichlet space
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 101-112
%V 389
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/
%G en
%F ZNSL_2011_389_a5
R. Zarouf. Application of a~Bernstein-type inequality to rational interpolation in the Dirichlet space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 101-112. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/