@article{ZNSL_2011_389_a5,
author = {R. Zarouf},
title = {Application of {a~Bernstein-type} inequality to rational interpolation in the {Dirichlet} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {101--112},
year = {2011},
volume = {389},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/}
}
R. Zarouf. Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 101-112. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a5/
[1] L. Baratchart, “Rational and meromorphic approximation in $L^p$ of the circle: system-theoretic motivations, critical points and error rates”, Computational Methods and Function Theory, eds. N. Papamichael, S. Ruscheweyh, E. Saff, World Scientific Publish. Co, 1999, 45–78 | MR | Zbl
[2] L. Baratchart, F. Wielonsky, “Rational approximation problem in the real Hardy space $H_2$ and Stieltjes integrals: a uniqueness theorem”, Constr. Approx., 9 (1993), 1–21 | DOI | MR | Zbl
[3] Math. USSR Izv., 14:2 (1980), 257–273 | DOI | MR | Zbl | Zbl
[4] K. M. Dyakonov, “Smooth functions in the range of a Hankel operator”, Indiana Univ. Math. J., 43 (1994), 805–838 | DOI | MR | Zbl
[5] R. J. Leveque, L. N. Trefethen, “On the resolvent condition in the Kreiss matrix theorem”, BIT, 24 (1984), 584–591 | DOI | MR | Zbl
[6] Russian Lekzii ob operatore sdviga, “Nauka”, Moskva, 1980 | MR | Zbl
[7] N. Nikolski, Operators, Function, and Systems: an easy reading, v. 1, Amer. Math. Soc. Monographs and Surveys, 2002
[8] Math. USSR Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl | Zbl
[9] A. A. Pekarskii, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR Sb., 52:2 (1985), 557–574 | DOI | MR | Zbl
[10] M. N. Spijker, “On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem”, BIT, 31 (1991), 551–555 | DOI | MR | Zbl
[11] R. Zarouf, “Analogs of the Kreiss resolvent condition for power bounded matrices”, Actes des journées du GDR AFHA (to appear)
[12] R. Zarouf, “Asymptotic sharpness of a Bernstein-type inequality for rational functions in $H^2$”, St. Petersburg. Math. Journal, 2011 (to appear) | MR
[13] R. Zarouf, Effective $H^\infty$ interpolation, submitted
[14] R. Zarouf, “Sharpening a result by E. B. Davies and B. Simon”, C. R. Acad. Sci. Paris, 347 (2009), 939–942 | DOI | MR | Zbl