Weighted composition operators into Lipschitz spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 85-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate bounded and compact weighted composition operators that map into holomorphic Lipschitz spaces.
@article{ZNSL_2011_389_a4,
     author = {E. S. Dubtsov},
     title = {Weighted composition operators into {Lipschitz} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--100},
     year = {2011},
     volume = {389},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a4/}
}
TY  - JOUR
AU  - E. S. Dubtsov
TI  - Weighted composition operators into Lipschitz spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 85
EP  - 100
VL  - 389
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a4/
LA  - ru
ID  - ZNSL_2011_389_a4
ER  - 
%0 Journal Article
%A E. S. Dubtsov
%T Weighted composition operators into Lipschitz spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 85-100
%V 389
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a4/
%G ru
%F ZNSL_2011_389_a4
E. S. Dubtsov. Weighted composition operators into Lipschitz spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 85-100. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a4/

[1] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[2] S. G. Krantz, S. Stević, “On the iterated logarithmic Bloch space on the unit ball”, Nonlinear Anal., 71:5–6 (2009), 1772–1795 | DOI | MR | Zbl

[3] Y. Liu, Y. Yu, “Composition followed by differentiation between $H^\infty$ and Zygmund spaces”, Complex Anal. Oper. Theory, published online: 22 May 2010 | DOI | MR

[4] P. J. Nieminen, “Compact differences of composition operators on Bloch and Lipschitz spaces”, Comput. Methods Funct. Theory, 7:2 (2007), 325–344 | DOI | MR | Zbl

[5] S. Ohno, K. Stroethoff, R. Zhao, “Weighted composition operators between Bloch-type spaces”, Rocky Mountain J. Math., 33:1 (2003), 191–215 | DOI | MR | Zbl

[6] Ch. Pommerenke, “Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation”, Comment. Math. Helv., 52:4 (1977), 591–602 | DOI | MR | Zbl

[7] U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbf C^n$, Mir, M., 1984 | MR | Zbl

[8] J. H. Shapiro, “Compact composition operators on spaces of boundary-regular holomorphic functions”, Proc. Amer. Math. Soc., 100:1 (1987), 49–57 | DOI | MR | Zbl

[9] J. H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993 | MR

[10] J. Xiao, “Composition operators associated with Bloch-type spaces”, Complex Variables Theory Appl., 46:2 (2001), 109–121 | DOI | MR | Zbl

[11] Z. Zhou, R. Chen, “Weighted composition operators from $F(p,q,s)$ to Bloch type spaces on the unit ball”, Internat. J. Math., 19:8 (2008), 899–926 | DOI | MR | Zbl