On the norms of generalized translation operators generated by Jacobi–Dunkl operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 34-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish an integral representation and improve the norm estimate for the generalized translation operators generated by Jacobi–Dunkl operators $$ \Lambda_{\alpha,\beta}f(x)=f'(x)+\frac{A_{\alpha,\beta}'(x)}{A_{\alpha,\beta}(x)}\,\frac{f(x)-f(-x)}2, $$ where $$ A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|\sin x|, $$ in the spaces $L_p[-\pi,\pi]$ with the weight $A_{\alpha,\beta}$. For $\alpha\ge\beta\ge-\frac12$ we prove that these norms do not exceed $2$.
@article{ZNSL_2011_389_a2,
     author = {O. L. Vinogradov},
     title = {On the norms of generalized translation operators generated by {Jacobi{\textendash}Dunkl} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--57},
     year = {2011},
     volume = {389},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On the norms of generalized translation operators generated by Jacobi–Dunkl operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 34
EP  - 57
VL  - 389
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/
LA  - ru
ID  - ZNSL_2011_389_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On the norms of generalized translation operators generated by Jacobi–Dunkl operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 34-57
%V 389
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/
%G ru
%F ZNSL_2011_389_a2
O. L. Vinogradov. On the norms of generalized translation operators generated by Jacobi–Dunkl operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 34-57. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/

[1] G. Sege, Ortogonalnye mnogochleny, GIFML, M., 1962

[2] R. Askey, Orthogonal polynomials and special functions, SIAM, Philadelphia, 1975 | MR | Zbl

[3] T. Koornwinder, “Jacobi polynomials. II. An analytic proof of the product formula”, SIAM J. Math. Anal., 5:1 (1974), 125–137 | DOI | MR | Zbl

[4] G. Gasper, W. Trebels, “Multiplier criteria of Marcienkiewicz type for Jacobi expansions”, Trans. Amer. Math. Soc., 231:1 (1977), 117–132 | DOI | MR | Zbl

[5] G. Gasper, “Positivity and the convolution structure for Jacobi series”, Ann. Math., 93:1 (1971), 112–118 | DOI | MR | Zbl

[6] G. Gasper, “Banach algebras for Jacobi series and positivity of a kernel”, Ann. Math., 95:2 (1972), 261–280 | DOI | MR | Zbl

[7] T. Koornwinder, “The addition formula for Jacobi polynomials and spherical harmonics”, SIAM J. Appl. Math., 25:2 (1973), 236–246 | DOI | MR | Zbl

[8] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[9] M. Rösler, “Dunkl operators: theory and applications”, Lecture notes in math., 1817, Springer-Verlag, Berlin–Heidelberg, 2003, 93–135 | DOI | MR | Zbl

[10] D. V. Chertova, “Teoremy Dzheksona v prostranstvakh $L_p$, $1\le p\le2$ s periodicheskim vesom Yakobi”, Izv. Tulskogo gos. un-ta. Estestvennye nauki, 2009, no. 1, 5–27 | MR

[11] M. Rösler, “Bessel-type signed hypergroups on $\mathbb R$”, Probability measures on groups and related structures, Proc. Conf. (Oberwolfach, 1994), eds. H. Heyer, A. Mukherjea, World Scientific, 1995, 292–304 | MR | Zbl

[12] N. Ben Salem, A. Ould Ahmed Salem, “Convolution structure associated with the Jacobi–Dunkl operator on $\mathbb R$”, Ramanujan Journal, 12 (2006), 359–378 | DOI | MR | Zbl

[13] M. A. Mourou, K. Trimèche, “Transmutation operators and Paley–Wiener theorem associated with a singular differential-difference operator on the real line”, Anal. Appl., 1:1 (2003), 43–70 | DOI | MR | Zbl

[14] M. A. Mourou, “Transmutation operators associated with a Dunkl-type differential-difference operator on the real line and certain of their applications”, Integral Transforms and Special Functions, 12:1 (2001), 77–88 | DOI | MR | Zbl

[15] S. Thangavelu, Y. Xu, “Convolution operator and maximal function for the Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR

[16] R. Edvards, Ryady Fure v sovremennom izlozhenii, v. 2, Mir, M., 1985

[17] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR