On the norms of generalized translation operators generated by Jacobi--Dunkl operators
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 34-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We establish an integral representation and improve the norm estimate for the generalized translation operators generated by Jacobi–Dunkl operators 
$$
\Lambda_{\alpha,\beta}f(x)=f'(x)+\frac{A_{\alpha,\beta}'(x)}{A_{\alpha,\beta}(x)}\,\frac{f(x)-f(-x)}2,
$$
where 
$$
A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|\sin x|,
$$
in the spaces $L_p[-\pi,\pi]$ with the weight $A_{\alpha,\beta}$. For $\alpha\ge\beta\ge-\frac12$ we prove that these norms do not exceed $2$.
			
            
            
            
          
        
      @article{ZNSL_2011_389_a2,
     author = {O. L. Vinogradov},
     title = {On the norms of generalized translation operators generated by {Jacobi--Dunkl} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--57},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/}
}
                      
                      
                    O. L. Vinogradov. On the norms of generalized translation operators generated by Jacobi--Dunkl operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 34-57. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/