@article{ZNSL_2011_389_a2,
author = {O. L. Vinogradov},
title = {On the norms of generalized translation operators generated by {Jacobi{\textendash}Dunkl} operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--57},
year = {2011},
volume = {389},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/}
}
O. L. Vinogradov. On the norms of generalized translation operators generated by Jacobi–Dunkl operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 34-57. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/
[1] G. Sege, Ortogonalnye mnogochleny, GIFML, M., 1962
[2] R. Askey, Orthogonal polynomials and special functions, SIAM, Philadelphia, 1975 | MR | Zbl
[3] T. Koornwinder, “Jacobi polynomials. II. An analytic proof of the product formula”, SIAM J. Math. Anal., 5:1 (1974), 125–137 | DOI | MR | Zbl
[4] G. Gasper, W. Trebels, “Multiplier criteria of Marcienkiewicz type for Jacobi expansions”, Trans. Amer. Math. Soc., 231:1 (1977), 117–132 | DOI | MR | Zbl
[5] G. Gasper, “Positivity and the convolution structure for Jacobi series”, Ann. Math., 93:1 (1971), 112–118 | DOI | MR | Zbl
[6] G. Gasper, “Banach algebras for Jacobi series and positivity of a kernel”, Ann. Math., 95:2 (1972), 261–280 | DOI | MR | Zbl
[7] T. Koornwinder, “The addition formula for Jacobi polynomials and spherical harmonics”, SIAM J. Appl. Math., 25:2 (1973), 236–246 | DOI | MR | Zbl
[8] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[9] M. Rösler, “Dunkl operators: theory and applications”, Lecture notes in math., 1817, Springer-Verlag, Berlin–Heidelberg, 2003, 93–135 | DOI | MR | Zbl
[10] D. V. Chertova, “Teoremy Dzheksona v prostranstvakh $L_p$, $1\le p\le2$ s periodicheskim vesom Yakobi”, Izv. Tulskogo gos. un-ta. Estestvennye nauki, 2009, no. 1, 5–27 | MR
[11] M. Rösler, “Bessel-type signed hypergroups on $\mathbb R$”, Probability measures on groups and related structures, Proc. Conf. (Oberwolfach, 1994), eds. H. Heyer, A. Mukherjea, World Scientific, 1995, 292–304 | MR | Zbl
[12] N. Ben Salem, A. Ould Ahmed Salem, “Convolution structure associated with the Jacobi–Dunkl operator on $\mathbb R$”, Ramanujan Journal, 12 (2006), 359–378 | DOI | MR | Zbl
[13] M. A. Mourou, K. Trimèche, “Transmutation operators and Paley–Wiener theorem associated with a singular differential-difference operator on the real line”, Anal. Appl., 1:1 (2003), 43–70 | DOI | MR | Zbl
[14] M. A. Mourou, “Transmutation operators associated with a Dunkl-type differential-difference operator on the real line and certain of their applications”, Integral Transforms and Special Functions, 12:1 (2001), 77–88 | DOI | MR | Zbl
[15] S. Thangavelu, Y. Xu, “Convolution operator and maximal function for the Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR
[16] R. Edvards, Ryady Fure v sovremennom izlozhenii, v. 2, Mir, M., 1985
[17] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR