On the norms of generalized translation operators generated by Jacobi--Dunkl operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 34-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an integral representation and improve the norm estimate for the generalized translation operators generated by Jacobi–Dunkl operators $$ \Lambda_{\alpha,\beta}f(x)=f'(x)+\frac{A_{\alpha,\beta}'(x)}{A_{\alpha,\beta}(x)}\,\frac{f(x)-f(-x)}2, $$ where $$ A_{\alpha,\beta}(x)=(1-\cos x)^\alpha(1+\cos x)^\beta|\sin x|, $$ in the spaces $L_p[-\pi,\pi]$ with the weight $A_{\alpha,\beta}$. For $\alpha\ge\beta\ge-\frac12$ we prove that these norms do not exceed $2$.
@article{ZNSL_2011_389_a2,
     author = {O. L. Vinogradov},
     title = {On the norms of generalized translation operators generated by {Jacobi--Dunkl} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--57},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - On the norms of generalized translation operators generated by Jacobi--Dunkl operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 34
EP  - 57
VL  - 389
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/
LA  - ru
ID  - ZNSL_2011_389_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T On the norms of generalized translation operators generated by Jacobi--Dunkl operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 34-57
%V 389
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/
%G ru
%F ZNSL_2011_389_a2
O. L. Vinogradov. On the norms of generalized translation operators generated by Jacobi--Dunkl operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 34-57. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a2/