Keldysh–Lavrentiev counterexample and means of powers of conformal mapping. 1. Construction of a mapping
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 252-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a region with infinitely many cusps on its boundary such that it is possible to estimate the derivative of a conformal mapping of the unit disk onto this region from below. We use here some ideas taken from a construction of a famous Keldysh–Lavrentiev example.
@article{ZNSL_2011_389_a13,
     author = {H. Hedenmalm and N. A. Shirokov},
     title = {Keldysh{\textendash}Lavrentiev counterexample and means of powers of conformal mapping. {1.~Construction} of a~mapping},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {252--256},
     year = {2011},
     volume = {389},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a13/}
}
TY  - JOUR
AU  - H. Hedenmalm
AU  - N. A. Shirokov
TI  - Keldysh–Lavrentiev counterexample and means of powers of conformal mapping. 1. Construction of a mapping
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 252
EP  - 256
VL  - 389
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a13/
LA  - ru
ID  - ZNSL_2011_389_a13
ER  - 
%0 Journal Article
%A H. Hedenmalm
%A N. A. Shirokov
%T Keldysh–Lavrentiev counterexample and means of powers of conformal mapping. 1. Construction of a mapping
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 252-256
%V 389
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a13/
%G ru
%F ZNSL_2011_389_a13
H. Hedenmalm; N. A. Shirokov. Keldysh–Lavrentiev counterexample and means of powers of conformal mapping. 1. Construction of a mapping. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 252-256. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a13/

[1] D. Kraetzer, “Experimental bound for the universal integral means spectrum of conformal maps”, Compl. Variabl. Theory Appl., 31 (1996), 305–309 | DOI | MR | Zbl

[2] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950