@article{ZNSL_2011_389_a12,
author = {D. M. Stolyarov},
title = {New correction theorems in the light of a~weighted {Littlewood{\textendash}Paley{\textendash}Rubio} de {Francia} inequality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {232--251},
year = {2011},
volume = {389},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a12/}
}
D. M. Stolyarov. New correction theorems in the light of a weighted Littlewood–Paley–Rubio de Francia inequality. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 232-251. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a12/
[1] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton University Press, 1993 | MR | Zbl
[2] S. V. Kislyakov,, “Teorema Litlvuda–Peli dlya proizvolnykh intervalov: vesovye otsenki”, Zap. nauchn. semin. POMI, 355, 2008, 180–198 | MR | Zbl
[3] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitary intervals”, Rev. Math. Iberoamer., 1 (1985), 1–13 | DOI | MR
[4] D. S. Anisimov, S. V. Kislyakov, “Dvoinye singulyarnye integraly: interpolyatsiya i ispravlenie”, Algebra i Analiz, 16:5 (2004), 1–33 | MR | Zbl
[5] S. V. Kisliakov, “A sharp correction theorem”, Studia Mathematica, 113:2 (1995), 177–196 | MR | Zbl
[6] S. V. Kislyakov, D. V. Parilov, “O teoreme Littlvuda–Peli dlya proizvolnykh intervalov”, Zap. nauchn. semin. POMI, 327, 2005, 98–114 | MR | Zbl
[7] S. V. Kisliakov, “Interpolation of $H^p$-spaces: some recent developments”, Function spaces, interpolation spaces, and related topics, Israel Math. Conference Proceedings, 13, 1999, 102–140 | MR | Zbl
[8] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, 1980 | MR
[9] K. Iosida, Funktsionalnyi analiz, LKI, 2010
[10] S. V. Kislyakov, “Kolichestvennyi aspekt teorem ob ispravlenii”, Zap. nauchn. semin. LOMI, 92, 1979, 182–191 | MR | Zbl
[11] D. E. Menshov, “Ob ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 11(53):1–2 (1942), 67–96 | MR | Zbl