New correction theorems in the light of a~weighted Littlewood--Paley--Rubio de Francia inequality
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 232-251

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following correction theorem: every function $f$ on the circumference $\mathbb T$ that is bounded by an $\alpha_1$-weight $w$ (this means that $Mw^2\le Cw^2$) can be modified on a set $e$ with $\int_ew\varepsilon$ so that the quadratic function built up from $f$ with the help of an arbitary sequence of nonintersecting intervals in $\mathbb Z$ will not exceed $C\log(\frac1\varepsilon)w$.
@article{ZNSL_2011_389_a12,
     author = {D. M. Stolyarov},
     title = {New correction theorems in the light of a~weighted {Littlewood--Paley--Rubio} de {Francia} inequality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {232--251},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a12/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - New correction theorems in the light of a~weighted Littlewood--Paley--Rubio de Francia inequality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 232
EP  - 251
VL  - 389
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a12/
LA  - ru
ID  - ZNSL_2011_389_a12
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T New correction theorems in the light of a~weighted Littlewood--Paley--Rubio de Francia inequality
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 232-251
%V 389
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a12/
%G ru
%F ZNSL_2011_389_a12
D. M. Stolyarov. New correction theorems in the light of a~weighted Littlewood--Paley--Rubio de Francia inequality. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 232-251. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a12/