Aizenberg formula in nonconvex domains and some its applications
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 206-231

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns the operator determined by the kernel of the Aizenberg integral representation for holomorphic functions. A special class of domains such that this operator acts from $C^\alpha(\partial\Omega)$ to $H^\alpha(\Omega)$ is introduced. An example of a nonconvex domain that belongs to this class is described.
@article{ZNSL_2011_389_a11,
     author = {A. Rotkevich},
     title = {Aizenberg formula in nonconvex domains and some its applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {206--231},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/}
}
TY  - JOUR
AU  - A. Rotkevich
TI  - Aizenberg formula in nonconvex domains and some its applications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 206
EP  - 231
VL  - 389
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/
LA  - ru
ID  - ZNSL_2011_389_a11
ER  - 
%0 Journal Article
%A A. Rotkevich
%T Aizenberg formula in nonconvex domains and some its applications
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 206-231
%V 389
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/
%G ru
%F ZNSL_2011_389_a11
A. Rotkevich. Aizenberg formula in nonconvex domains and some its applications. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 206-231. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/