Aizenberg formula in nonconvex domains and some its applications
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 206-231
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper concerns the operator determined by the kernel of the Aizenberg integral representation for holomorphic functions. A special class of domains such that this operator acts from $C^\alpha(\partial\Omega)$ to $H^\alpha(\Omega)$ is introduced. An example of a nonconvex domain that belongs to this class is described.
@article{ZNSL_2011_389_a11,
author = {A. Rotkevich},
title = {Aizenberg formula in nonconvex domains and some its applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {206--231},
year = {2011},
volume = {389},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/}
}
A. Rotkevich. Aizenberg formula in nonconvex domains and some its applications. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 206-231. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/
[1] L. A. Aizenberg, L. P. Yuzhakov, Integralnye predstavleniya i vychety v kompleksnom analize, Nauka, 1979
[2] G. M. Khenkin, “Metod integralnykh predstavlenii v kompleksnom analize”, Kompleksnyi analiz – mnogie peremennye – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 7, VINITI, 1985, 23–124 | MR | Zbl
[3] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, 1989 | MR | Zbl
[4] U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl