Aizenberg formula in nonconvex domains and some its applications
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 206-231
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper concerns the operator determined by the kernel of the Aizenberg integral representation for holomorphic functions. A special class of domains such that this operator acts from $C^\alpha(\partial\Omega)$ to $H^\alpha(\Omega)$ is introduced. An example of a nonconvex domain that belongs to this class is described.
			
            
            
            
          
        
      @article{ZNSL_2011_389_a11,
     author = {A. Rotkevich},
     title = {Aizenberg formula in nonconvex domains and some its applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {206--231},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/}
}
                      
                      
                    A. Rotkevich. Aizenberg formula in nonconvex domains and some its applications. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 206-231. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a11/