On the definition of $B$-points of a~Borel charge on the real line
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 191-205
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mu$ be a Borel charge (i.e., a real Borel measure) on $\mathbb R$, and let $P_{(y)}(t)=\frac y{\pi(y^2+t^2)}$, $y>0$, $t\in\mathbb R$, denote the Poisson kernel. Bourgain proved in [1,2] that for a nonnegative $\mu$ and for numerous $x\in\mathbb R$ the variation of the function $y\mapsto(\mu*P_{(y)})(x)$ on $(0,1]$ is finite. This is true in particular for the so-called $B$-points $x$ (see e.g., [4]). In the present article new descriptions of $B$-points are given adjusted to some applications of this notion.
			
            
            
            
          
        
      @article{ZNSL_2011_389_a10,
     author = {P. A. Mozolyako},
     title = {On the definition of $B$-points of {a~Borel} charge on the real line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--205},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a10/}
}
                      
                      
                    P. A. Mozolyako. On the definition of $B$-points of a~Borel charge on the real line. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 191-205. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a10/