Extension of a theorem by Hardy and Littlewood
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 21-33
Cet article a éte moissonné depuis la source Math-Net.Ru
We give the following extension of a theorem by Hardy and Littlewood. Suppose $f$ is a holomorphic function in the unit disk and $$ M_p(r,f)=\Bigl(\frac1{2\pi}\int_{-\pi}^\pi|f(re^{i\theta})|^pd\theta\Bigr)^{\frac1p}=O(\varphi(r)),\quad r\to1-0, $$ where $\varphi$ is a monotone increasing function on $(0,1)$ and $$ \alpha_\varphi=\lim_{r\to1-0}\frac{\varphi'(r)(1-r)}{\varphi(r)}. $$ 1) If $0\leq\alpha_\varphi<+\infty$, then $M_p(r,f')=O(\frac{\varphi(r)}{1-r})$, $r\to1-0$; 2) If $\alpha_\varphi=+\infty$, then $M_p(r,f')=O(\varphi'(r))$, $r\to1-0$.
@article{ZNSL_2011_389_a1,
author = {S. V. Bykov},
title = {Extension of a~theorem by {Hardy} and {Littlewood}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {21--33},
year = {2011},
volume = {389},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a1/}
}
S. V. Bykov. Extension of a theorem by Hardy and Littlewood. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 21-33. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a1/
[1] G. H. Hardy, I. E. Littlewood, “Some properties of fractional II integrals”, Math. Zeitschrift, 28 (1928), 612–634 | DOI | MR | Zbl
[2] P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York–London, 1970 | MR | Zbl
[3] N. K. Nikolskii, Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza, Tr. MIAN SSSR im. V. A. Steklova, 120, M., 1974 | MR | Zbl
[4] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Fizmatlit, M., 1962 | MR