Extension of a~theorem by Hardy and Littlewood
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 21-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give the following extension of a theorem by Hardy and Littlewood. Suppose $f$ is a holomorphic function in the unit disk and
$$
M_p(r,f)=\Bigl(\frac1{2\pi}\int_{-\pi}^\pi|f(re^{i\theta})|^pd\theta\Bigr)^{\frac1p}=O(\varphi(r)),\quad r\to1-0,
$$
where $\varphi$ is a monotone increasing function on $(0,1)$ and
$$
\alpha_\varphi=\lim_{r\to1-0}\frac{\varphi'(r)(1-r)}{\varphi(r)}.
$$ 1) If $0\leq\alpha_\varphi+\infty$, then $M_p(r,f')=O(\frac{\varphi(r)}{1-r})$, $r\to1-0$;
2) If $\alpha_\varphi=+\infty$, then $M_p(r,f')=O(\varphi'(r))$, $r\to1-0$.
			
            
            
            
          
        
      @article{ZNSL_2011_389_a1,
     author = {S. V. Bykov},
     title = {Extension of a~theorem by {Hardy} and {Littlewood}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {389},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a1/}
}
                      
                      
                    S. V. Bykov. Extension of a~theorem by Hardy and Littlewood. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 39, Tome 389 (2011), pp. 21-33. http://geodesic.mathdoc.fr/item/ZNSL_2011_389_a1/