Invariant subalgebras of involutorial quaternion division algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 196-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K/k$ be a separable quadratic field extension. For quaternion division algebras with $K/k$ involutions $\tau$ their $\tau$-invariant $k$-subalgebras are studied. We give a complete description of such subalgebras up to $k$-isomorphisms.
@article{ZNSL_2011_388_a8,
     author = {A. V. Prokopchuk and V. I. Yanchevskiǐ},
     title = {Invariant subalgebras of involutorial quaternion division algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--209},
     year = {2011},
     volume = {388},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a8/}
}
TY  - JOUR
AU  - A. V. Prokopchuk
AU  - V. I. Yanchevskiǐ
TI  - Invariant subalgebras of involutorial quaternion division algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 196
EP  - 209
VL  - 388
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a8/
LA  - ru
ID  - ZNSL_2011_388_a8
ER  - 
%0 Journal Article
%A A. V. Prokopchuk
%A V. I. Yanchevskiǐ
%T Invariant subalgebras of involutorial quaternion division algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 196-209
%V 388
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a8/
%G ru
%F ZNSL_2011_388_a8
A. V. Prokopchuk; V. I. Yanchevskiǐ. Invariant subalgebras of involutorial quaternion division algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 196-209. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a8/

[1] A. A. Albert, Structure of Algebras, AMS, N.-Y., 1980

[2] Zh. Dëdonne, Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[3] N. Burbaki, Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[4] B. A. Sethuraman, B. Sury, “On the special unitary group of a division algebra”, Proc. Amer. Math. Soc., 134 (2005), 351–354 | DOI | MR

[5] V. I. Yanchevskii, “Ob abelevykh faktorakh spetsialnykh unitarnykh grupp anizotropnykh form”, Dokl. NAN Belarusi, 2011, (prinyata k pechati)

[6] B. Sury, “On $\mathrm{SU}(1,D)/[U(1,D),U(1,D)]$ for a quaternion division algebra $D$”, Arch. Math., 90 (2008), 493–500 | DOI | MR | Zbl