Commutative algebras and representations of the category of finite sets
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 189-195

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that two finite-dimensional commutative algebras over an algebraically closed field are isomorphic if and only if they give rise to isomorphic representations of the category of finite sets and surjective maps.
@article{ZNSL_2011_388_a7,
     author = {S. S. Podkorytov},
     title = {Commutative algebras and representations of the category of finite sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {189--195},
     publisher = {mathdoc},
     volume = {388},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a7/}
}
TY  - JOUR
AU  - S. S. Podkorytov
TI  - Commutative algebras and representations of the category of finite sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 189
EP  - 195
VL  - 388
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a7/
LA  - ru
ID  - ZNSL_2011_388_a7
ER  - 
%0 Journal Article
%A S. S. Podkorytov
%T Commutative algebras and representations of the category of finite sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 189-195
%V 388
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a7/
%G ru
%F ZNSL_2011_388_a7
S. S. Podkorytov. Commutative algebras and representations of the category of finite sets. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 189-195. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a7/