Nakayama functors and Eilenberg–Watts theorems
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 179-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper analogues of Eilenberg–Watts theorem are proved for categories of finitely generated modules over finite dimensional algebras for right exact and left exact functors. Furthermore, for left exact functors corresponding bimodules are described explicitly. The main aim of this paper is to present how one can obtain some new descriptions of Nakayama functor and inverse Nakayama functor for selfinjective algebras with this versions of Eilenberg–Watts theorem.
@article{ZNSL_2011_388_a6,
     author = {S. O. Ivanov},
     title = {Nakayama functors and {Eilenberg{\textendash}Watts} theorems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--188},
     year = {2011},
     volume = {388},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a6/}
}
TY  - JOUR
AU  - S. O. Ivanov
TI  - Nakayama functors and Eilenberg–Watts theorems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 179
EP  - 188
VL  - 388
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a6/
LA  - ru
ID  - ZNSL_2011_388_a6
ER  - 
%0 Journal Article
%A S. O. Ivanov
%T Nakayama functors and Eilenberg–Watts theorems
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 179-188
%V 388
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a6/
%G ru
%F ZNSL_2011_388_a6
S. O. Ivanov. Nakayama functors and Eilenberg–Watts theorems. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 179-188. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a6/

[1] S. Eilenberg, “Abstract description of some basic functors”, J. Indian Math. Soc., 24 (1960), 231–234 | MR

[2] C. E. Watts, “Intrinsic characterizations of some additive functors”, Proc. Amer. Math. Soc., 11 (1960), 5–8 | DOI | MR | Zbl

[3] I. Assem, D. Simson, A. Skowroński, Elements of Representation Theory of Associative Algebras, v. I, London Math. Soc. Student Texts, 65, Techniques of Representation Theory, Cambridge Univ. Press, 2005 | MR

[4] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., 36, Cambridge Univ. Press, 1995 | MR | Zbl