Hochschild cohomology of algebras of quaternion type. The family $Q(2\mathcal B)_1$ in characteristic 3
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 152-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, the Hochschild cohomology is investigated for algebras of quaternion type from the family $Q(2\mathcal B)_1$ over an algebraically closed field of characteristic 3. Using previously constructed 4-periodic bimodule resolution, we describe Hochschild cohomology algebra of the above algebras in terms of generators and relations.
@article{ZNSL_2011_388_a5,
     author = {A. A. Ivanov},
     title = {Hochschild cohomology of algebras of quaternion type. {The} family $Q(2\mathcal B)_1$ in characteristic~3},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--178},
     year = {2011},
     volume = {388},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a5/}
}
TY  - JOUR
AU  - A. A. Ivanov
TI  - Hochschild cohomology of algebras of quaternion type. The family $Q(2\mathcal B)_1$ in characteristic 3
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 152
EP  - 178
VL  - 388
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a5/
LA  - ru
ID  - ZNSL_2011_388_a5
ER  - 
%0 Journal Article
%A A. A. Ivanov
%T Hochschild cohomology of algebras of quaternion type. The family $Q(2\mathcal B)_1$ in characteristic 3
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 152-178
%V 388
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a5/
%G ru
%F ZNSL_2011_388_a5
A. A. Ivanov. Hochschild cohomology of algebras of quaternion type. The family $Q(2\mathcal B)_1$ in characteristic 3. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 152-178. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a5/

[1] S. Eilenberg, S. MacLane, “Cohomology theory in abstract groups, I”, Ann. Math., 48 (1947), 51–78 | DOI | MR | Zbl

[2] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, M., 1960

[3] M. Gerstenhaber, “The cohomology structure of an associative ring”, Ann. Math., 78 (1963), 267–288 | DOI | MR | Zbl

[4] M. Gerstenhaber, S. D. Schack, “Algebraic cohomology and deformation theory”, Deformation theory of algebras and structures and applications, NATO ASI Ser., Ser. C: Math. and Phys. Sci., 247, eds. M. Hazewinkel, M. Gerstenhaber, Kluwer Acad. Publ., 1988, 11–264 | MR

[5] K. Erdmann, “Blocks of tame representation type and related algebras”, Lecture Notes in Math., 1428, Berlin–Heidelberg, 1990 | MR | Zbl

[6] A. I. Generalov, A. A. Ivanov, S. O. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. II. Seriya $Q(2\mathcal B)_1$ v kharakteristike 2”, Zap. nauchn. semin. POMI, 349, 2007, 53–134

[7] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. III. Algebry s malym parametrom”, Zap. nauchn. semin. POMI, 356, 2008, 46–84 | MR | Zbl

[8] A. A. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa: seriya $Q(2\mathcal B)_1(k,s,a,c)$ v kharakteristike ne 2”, Vestnik SPbGU, Seriya 1, 2010, no. 1, 63–72 | Zbl

[9] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa, I: seriya $D(3\mathcal K)$ v kharakteristike 2”, Algebra i analiz, 16:6 (2004), 53–122 | MR | Zbl

[10] K. Erdmann, A. Skowroński, “The stable Calabi–Yau dimension of tame symmetric algebras”, J. Math. Soc. Japan, 58:1 (2006), 97–128 | DOI | MR | Zbl

[11] Th. Holm, “Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type”, J. Algebra, 211 (1999), 159–205 | DOI | MR | Zbl