@article{ZNSL_2011_388_a5,
author = {A. A. Ivanov},
title = {Hochschild cohomology of algebras of quaternion type. {The} family $Q(2\mathcal B)_1$ in characteristic~3},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--178},
year = {2011},
volume = {388},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a5/}
}
TY - JOUR AU - A. A. Ivanov TI - Hochschild cohomology of algebras of quaternion type. The family $Q(2\mathcal B)_1$ in characteristic 3 JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 152 EP - 178 VL - 388 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a5/ LA - ru ID - ZNSL_2011_388_a5 ER -
A. A. Ivanov. Hochschild cohomology of algebras of quaternion type. The family $Q(2\mathcal B)_1$ in characteristic 3. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 152-178. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a5/
[1] S. Eilenberg, S. MacLane, “Cohomology theory in abstract groups, I”, Ann. Math., 48 (1947), 51–78 | DOI | MR | Zbl
[2] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, M., 1960
[3] M. Gerstenhaber, “The cohomology structure of an associative ring”, Ann. Math., 78 (1963), 267–288 | DOI | MR | Zbl
[4] M. Gerstenhaber, S. D. Schack, “Algebraic cohomology and deformation theory”, Deformation theory of algebras and structures and applications, NATO ASI Ser., Ser. C: Math. and Phys. Sci., 247, eds. M. Hazewinkel, M. Gerstenhaber, Kluwer Acad. Publ., 1988, 11–264 | MR
[5] K. Erdmann, “Blocks of tame representation type and related algebras”, Lecture Notes in Math., 1428, Berlin–Heidelberg, 1990 | MR | Zbl
[6] A. I. Generalov, A. A. Ivanov, S. O. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. II. Seriya $Q(2\mathcal B)_1$ v kharakteristike 2”, Zap. nauchn. semin. POMI, 349, 2007, 53–134
[7] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. III. Algebry s malym parametrom”, Zap. nauchn. semin. POMI, 356, 2008, 46–84 | MR | Zbl
[8] A. A. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa: seriya $Q(2\mathcal B)_1(k,s,a,c)$ v kharakteristike ne 2”, Vestnik SPbGU, Seriya 1, 2010, no. 1, 63–72 | Zbl
[9] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa, I: seriya $D(3\mathcal K)$ v kharakteristike 2”, Algebra i analiz, 16:6 (2004), 53–122 | MR | Zbl
[10] K. Erdmann, A. Skowroński, “The stable Calabi–Yau dimension of tame symmetric algebras”, J. Math. Soc. Japan, 58:1 (2006), 97–128 | DOI | MR | Zbl
[11] Th. Holm, “Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type”, J. Algebra, 211 (1999), 159–205 | DOI | MR | Zbl