Homogeneous skew-fields of non-commutative rational functions and their reduced Whitehead groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 270-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A construction of skew-fields of non-commutative rational functions is studied. We discuss and prove criterions for such skew-fields to be homogeneous and finite-dimensional over their centers and describe relations between some objects defined in terms of the skew-fields of constants, which help to compute reduced Whitehead groups of corresponding skew-fields of non-commutative rational functions. In particular we present a proof of one previous result of V. P. Platonov and the author about reduced Whitehead groups of skew-fields of non-commutative rational functions announced in 1979 and obtain in non-Henselian case of such skew-fields analogues of all results of Yu. L. Ershov for Henselian situation.
@article{ZNSL_2011_388_a11,
     author = {V. I. Yanchevskiǐ},
     title = {Homogeneous skew-fields of non-commutative rational functions and their reduced {Whitehead} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {270--308},
     year = {2011},
     volume = {388},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a11/}
}
TY  - JOUR
AU  - V. I. Yanchevskiǐ
TI  - Homogeneous skew-fields of non-commutative rational functions and their reduced Whitehead groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 270
EP  - 308
VL  - 388
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a11/
LA  - ru
ID  - ZNSL_2011_388_a11
ER  - 
%0 Journal Article
%A V. I. Yanchevskiǐ
%T Homogeneous skew-fields of non-commutative rational functions and their reduced Whitehead groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 270-308
%V 388
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a11/
%G ru
%F ZNSL_2011_388_a11
V. I. Yanchevskiǐ. Homogeneous skew-fields of non-commutative rational functions and their reduced Whitehead groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 270-308. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a11/

[1] N. Dzhekobson, Teoriya kolets, IL, M., 1947

[2] Yu. L. Ershov, “Genzelevy normirovaniya tel i gruppa $SK_1$”, Mat. sb., 117(159):1 (1982), 60–68 | MR | Zbl

[3] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[4] P. Kon, Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[5] S. Leng, Algebra, Mir, M., 1968

[6] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR

[7] V. P. Platonov, “O probleme Tannaka–Artina”, Dokl. AN SSSR, 221:5 (1975), 1038–1041 | MR | Zbl

[8] V. P. Platonov, “Problema Tannaka–Artina i gruppy proektivnykh konorm”, Dokl. AN SSSR, 222:6 (1975), 1299–1302 | MR | Zbl

[9] V. P. Platonov, “Problema Tannaka–Artina i privedennaya $K$-teoriya”, Izv. AN SSSR, ser. matem., 40:2 (1976), 227–261 | MR | Zbl

[10] V. P. Platonov, “Privedennaya $K$-teoriya i approksimatsiya v algebraicheskikh gruppakh”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 142, 1976, 198–207 | MR | Zbl

[11] V. P. Platonov, V. I. Yanchevskii, “$\mathrm{SK}_1$ dlya tel nekommutativnykh ratsionalnykh funktsii”, Dokl. AN SSSR, 249:5 (1979), 1064–1068 | MR | Zbl

[12] A. V. Prokopchuk, S. V. Tikhonov, V. I. Yanchevskii, “Ob obschikh elementakh v gruppakh $\mathrm{SK}_1$ dlya tsentralnykh prostykh algebr”, Vestsi NAN Belarusi. Seryya fiz-mat. navuk, 2008, no. 3, 35–42 | MR

[13] A. V. Prokopchuk, S. V. Tikhonov, V. I. Yanchevskii, “O spetsialnykh svoistvakh tel nekommutativnykh ratsionalnykh funktsii”, Dokl. NAN Belarusi (to appear)

[14] Zh.-P. Serr, Kogomologii Galua, Mir, M., 1968 | MR | Zbl

[15] A. A. Suslin, “Algebraicheskaya K-teoriya i gomomorfizm normennogo vycheta”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 25, 1984, 115–207 | MR | Zbl

[16] V. I. Yanchevskii, “Kommutanty prostykh algebr s syurektivnoi privedennoi normoi”, Dokl. AN SSSR, 221:5 (1975), 1056–1058 | MR | Zbl

[17] V. I. Yanchevskii, “Tela nad genzelevymi diskretno normirovannymi polyami i problema Tannaka–Artina”, Dokl. AN SSSR, 226:2 (1976), 281–283 | MR | Zbl

[18] V. I. Yanchevskii, Privedennaya unitarnaya $K$-teoriya, Dis. na soisk. uch. st. d. f.-m. n., In-t matematiki AN BSSR, Minsk, 1980

[19] S. A. Amitsur, D. Saltman, “Generic Abelian Crossed Products and $p$-Algebras”, J. Algebra, 51 (1978), 76–87 | DOI | MR | Zbl

[20] P. Draxl, M. Kneser (eds.), $\mathrm{SK}_1$ von Schiefkörpern, Lecture Notes in Math., 778, Springer-Verlag, 1980 | DOI | MR | Zbl

[21] P. Gille, “Le Probleme de Kneser–Tits”, Séminaire Bourbaki, Exp. No. 983, v. 2007/2008, Astérisque, 326, 2009, 39–81 | MR

[22] R. Hazrat, “Wedderburn's Factorization Theorem, Application to Reduced $K$-Theory”, Proc. Amer. Math. Soc., 130 (2002), 311–314 | DOI | MR | Zbl

[23] R. Hazrat, A. R. Wadsworth, “$\mathrm{SK}_1$ of graded division algebras”, Israel J. Math. (to appear)

[24] A. S. Merkurjev, “Generic element in $\mathrm{SK}_1$ for simple algebras”, $K$-Theory, 7 (1993), 1–3 | DOI | MR | Zbl

[25] T. Nakayama, Y. Matsushima, “Über die multiplicative Gruppe einer $p$-adischen Divisionalgebra”, Proc Imp. Acad. Japan, 19 (1943), 622–628 | DOI | MR | Zbl

[26] V. P. Platonov, “Algebraic groups and reduced $K$-theory”, Proc. Intern. Congr. Math., v. 1, Helsinki, 1980, 311–323 | MR

[27] U. Rehmann, S. V. Tikhonov, V. I. Yanchevskii, “Symbols and cyclicity of algebras after a scalar extension”, Fundam. Prikl. Mat., 14:6 (2008), 193–209 | MR

[28] A. A. Suslin, “$\mathrm{SK}_1$ of Division Algebras and Galois Cohomology”, Algebraic $K$-Theory, Adv. Soviet Math., 4, Amer. Math. Soc., Providence, 1991, 75–99 | MR

[29] A. A. Suslin, “$\mathrm{SK}_1$ of Division Algebras and Galois Cohomology revisted”, Proceeding of the St. Petersburg Math. Soc., v. XII, Amer. Math. Soc. Trasl. Ser. 2, 219, 2006, 125–147 | MR | Zbl

[30] S. Wang, “On the commutator group of a simple algebra”, Amer. J. Math., 72 (1950), 323–334 | DOI | MR | Zbl

[31] V. I. Yanchevskiĭ, “Whitehead groups and groups of $R$-equivalence classes of linear algebraic groups of non-commutative classical type over some virtual fields”, Algebraic Groups and Arithmetic (TIFR), Mumbai, 2004, 491–505 | MR | Zbl