On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 247-269
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study behavior of regular unipotent elements from a subsystem subgroup of type $A_1\times A_2$ in $p$-restricted irreducible representations of a special linear group of rank greater than $5$ over a field of characteristic $p>2$. For a certain class of such representations with locally small highest weights it is shown that the images of these elements have Jordan blocks of all a priori possible sizes. In particular, the following is proved. 
Let $K$ be an algebraically closed field of characteristic $p$, $G=A_r(K)$, $r\geq9$, $x\in G$ be a regular unipotent element from a subsystem subgroup of type $A_1\times A_2$, and let $\varphi$ be a $p$-restricted representation of $G$ with highest weight $\sum^r_{j=1}a_j\omega_j$. Set $l=\min\{p,1+2a_1+3(a_2+\dots+a_{r-1})+2a_r\}$. Assume that more than $6$ coefficients $a_j$ are not equal to $p-1$ and that for some $i$, the sum $a_i+a_{i+1}$ for $p>3$ and $a_i=a_{i+1}=0$ or $1$ for $p=3$. Then the element $\varphi(x)$ has Jordan blocks of all sizes from $1$ to $l$.
			
            
            
            
          
        
      @article{ZNSL_2011_388_a10,
     author = {I. D. Suprunenko},
     title = {On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--269},
     publisher = {mathdoc},
     volume = {388},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/}
}
                      
                      
                    TY - JOUR AU - I. D. Suprunenko TI - On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 247 EP - 269 VL - 388 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/ LA - ru ID - ZNSL_2011_388_a10 ER -
%0 Journal Article %A I. D. Suprunenko %T On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 247-269 %V 388 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/ %G ru %F ZNSL_2011_388_a10
I. D. Suprunenko. On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 247-269. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/