On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 247-269

Voir la notice de l'article provenant de la source Math-Net.Ru

We study behavior of regular unipotent elements from a subsystem subgroup of type $A_1\times A_2$ in $p$-restricted irreducible representations of a special linear group of rank greater than $5$ over a field of characteristic $p>2$. For a certain class of such representations with locally small highest weights it is shown that the images of these elements have Jordan blocks of all a priori possible sizes. In particular, the following is proved. Let $K$ be an algebraically closed field of characteristic $p$, $G=A_r(K)$, $r\geq9$, $x\in G$ be a regular unipotent element from a subsystem subgroup of type $A_1\times A_2$, and let $\varphi$ be a $p$-restricted representation of $G$ with highest weight $\sum^r_{j=1}a_j\omega_j$. Set $l=\min\{p,1+2a_1+3(a_2+\dots+a_{r-1})+2a_r\}$. Assume that more than $6$ coefficients $a_j$ are not equal to $p-1$ and that for some $i$, the sum $a_i+a_{i+1}$ for $p>3$ and $a_i=a_{i+1}=0$ or $1$ for $p=3$. Then the element $\varphi(x)$ has Jordan blocks of all sizes from $1$ to $l$.
@article{ZNSL_2011_388_a10,
     author = {I. D. Suprunenko},
     title = {On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--269},
     publisher = {mathdoc},
     volume = {388},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/}
}
TY  - JOUR
AU  - I. D. Suprunenko
TI  - On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 247
EP  - 269
VL  - 388
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/
LA  - ru
ID  - ZNSL_2011_388_a10
ER  - 
%0 Journal Article
%A I. D. Suprunenko
%T On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 247-269
%V 388
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/
%G ru
%F ZNSL_2011_388_a10
I. D. Suprunenko. On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 247-269. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/