On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 247-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study behavior of regular unipotent elements from a subsystem subgroup of type $A_1\times A_2$ in $p$-restricted irreducible representations of a special linear group of rank greater than $5$ over a field of characteristic $p>2$. For a certain class of such representations with locally small highest weights it is shown that the images of these elements have Jordan blocks of all a priori possible sizes. In particular, the following is proved. Let $K$ be an algebraically closed field of characteristic $p$, $G=A_r(K)$, $r\geq9$, $x\in G$ be a regular unipotent element from a subsystem subgroup of type $A_1\times A_2$, and let $\varphi$ be a $p$-restricted representation of $G$ with highest weight $\sum^r_{j=1}a_j\omega_j$. Set $l=\min\{p,1+2a_1+3(a_2+\dots+a_{r-1})+2a_r\}$. Assume that more than $6$ coefficients $a_j$ are not equal to $p-1$ and that for some $i, the sum $a_i+a_{i+1} for $p>3$ and $a_i=a_{i+1}=0$ or $1$ for $p=3$. Then the element $\varphi(x)$ has Jordan blocks of all sizes from $1$ to $l$.
@article{ZNSL_2011_388_a10,
     author = {I. D. Suprunenko},
     title = {On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--269},
     year = {2011},
     volume = {388},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/}
}
TY  - JOUR
AU  - I. D. Suprunenko
TI  - On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 247
EP  - 269
VL  - 388
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/
LA  - ru
ID  - ZNSL_2011_388_a10
ER  - 
%0 Journal Article
%A I. D. Suprunenko
%T On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 247-269
%V 388
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/
%G ru
%F ZNSL_2011_388_a10
I. D. Suprunenko. On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 247-269. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a10/

[1] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[2] N. Burbaki, Gruppy i algebry Li, Gl. VII–VIII, Mir, M., 1978 | MR

[3] M. V. Velichko, “O povedenii kornevykh elementov v modulyarnykh predstavleniyakh simplekticheskikh grupp”, Trudy In-ta matematiki NAN Belarusi, 14:2 (2006), 28–34

[4] M. V. Velichko, Svoistva malykh unipotentnykh elementov v modulyarnykh predstavleniyakh klassicheskikh algebraicheskikh grupp, Avtoref. diss. na soiskanie uchenoi stepeni kand. fiz.-mat. nauk: 01.01.06, Institut matematiki NAN Belarusi, Minsk, 2007

[5] M. V. Velichko, I. D. Suprunenko, “Malye kvadratichnye elementy v predstavleniyakh spetsialnoi lineinoi gruppy s bolshimi starshimi vesami”, Zap. nauchn. semin. POMI, 343, 2007, 84–120 | MR

[6] M. V. Velichko, I. D. Suprunenko, “O povedenii kvadratichnykh unipotentnykh elementov v modulyarnykh predstavleniyakh simplekticheskoi gruppy s bolshimi starshimi vesami”, Tezisy dokladov 10-i mezhdunarodnoi belorusskoi matematicheskoi konferentsii, Chast 1, Minsk, 2008, 13–14

[7] A. A. Osinovskaya, “Regulyarnye unipotentnye elementy iz estestvenno vlozhennykh podgrupp ranga 2 v modulyarnykh predstavleniyakh klassicheskikh grupp”, Zap. nauchn. semin. POMI, 356, 2008, 159–178 | MR | Zbl

[8] A. A. Osinovskaya, “Regulyarnye unipotentnye elementy iz podsistemnykh podgrupp tipa $C_2$ v predstavleniyakh”, Trudy In-ta matematiki NAN Belarusi, 17:1 (2009), 119–126 | Zbl

[9] A. A. Osinovskaya, “Ogranicheniya neprivodimykh predstavlenii algebry Li $\mathfrak{sl}_3$ na podalgebry tipa $\mathfrak{sl}_2$ i struktura blokov Zhordana nilpotentnykh elementov”, Vestsi NAN Belarusi. Ser fiz.-mat. navuk, 2000, no. 2, 52–55 | MR

[10] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[11] D. A. Suprunenko, Gruppy matrits, Nauka, M., 1972 | MR | Zbl

[12] I. D. Suprunenko, “Minimalnye polinomy elementov poryadka $p$ v neprivodimykh predstavleniyakh grupp Shevalle nad polyami kharakteristiki $p$”, Problemy algebry i logiki, Trudy In-ta matematiki SO RAN, 30, 1996, 126–163 | Zbl

[13] I. D. Suprunenko, “Ogranicheniya na malye estestvennye podgruppy modulyarnykh neprivodimykh predstavlenii spetsialnoi lineinoi gruppy s bolshimi otnositelno kharakteristiki starshimi vesami ne vpolne privodimy”, Dokl. NAN Belarusi, 42:3 (1998), 27–31 | MR | Zbl

[14] U. Feit, Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990 | MR | Zbl

[15] Dzh. Khamfris, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[16] B. Braden, “Restricted representations of classical Lie algebras of type $A_2$ and $B_2$”, Bull. Amer. Math. Soc., 73 (1967), 482–486 | DOI | MR | Zbl

[17] C. W. Curtis, I. Reiner, Methods of representation theory with applications to finite groups and orders, v. 1, Wiley-Interscience, New York, 1990 | MR | Zbl

[18] J. C. Jantzen, Darstellungen halbeinfacher algebraicher Gruppen und zugeordnete kontravariante Formen, Bonner Math. Schr., 67, 1973 | MR | Zbl

[19] J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., AMS, Providence, 2003 | MR | Zbl

[20] R. Lawther, D. Testerman, $A_1$-subgroups of exceptional algebraic groups, Memoirs Amer. Math. Soc., 141, no. 674, 1999 | DOI | MR

[21] F. Lubeck, “Small degree representations of finite Chevalley groups in defining characteristic”, LMS J. Comput. Math., 4 (2001), 135–169 | DOI | MR | Zbl

[22] A. A. Osinovskaya, “Restrictions of representations of algebraic groups of types $E_n$ and $F_4$ to naturally embedded $A_1$-subgroups and the behavior of root elements”, Comm. Algebra, 33 (2005), 213–220 | DOI | MR | Zbl

[23] A. A. Osinovskaya, I. D. Suprunenko, “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273 (2004), 586–600 | DOI | MR | Zbl

[24] G. M. Seitz, The maximal subgroups of classical algebraic groups, Memoirs Amer. Math. Soc., 67, no. 365, 1987 | DOI | MR

[25] S. Smith, “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[26] I. D. Suprunenko, The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs Amer. Math. Soc., 200, no. 939, 2009 | DOI | MR

[27] I. D. Suprunenko, “Properties of quadratic elements in representations of the classical algebraic groups”, Tezisy dokladov mezhdunarodnoi konferentsii “Diskretnaya matematika, algebra i ikh prilozheniya”, Minsk, 2009, 67–69

[28] I. D. Suprunenko, M. V. Velichko, “The Jordan block structure of quadratic unipotent elements in modular representations of the classical algebraic groups with large highest weights”, Tezisy dokladov mezhdunarodnoi algebraicheskoi konferentsii, posvyaschennoi 100-letiyu so dnya rozhdeniya professora A. G. Kurosha, Moskva, 2008, 357–359

[29] P. H. Tiep, A. E. Zalesskii, “Mod $p$ reducibility of unramified representations of finite groups of Lie type”, Proc. London Math. Soc., 84 (2002), 439–472 | DOI | MR | Zbl

[30] M. V. Velichko, “On the behaviour of root elements in irreducible representations of simple algebraic groups”, Trudy In-ta matematiki NAN Belarusi, 13:2 (2005), 116–121