Unitriangular factorisations of Chevalley groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 17-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Lately, the following problem attracted a lot of attention in various contexts: find the shortest factorisation $G=UU^-UU^-\dots U^\pm$ of a Chevalley group $G=G(\Phi,R)$ in terms of the unipotent radical $U=U(\Phi,R)$ of the standard Borel subgroup $B=B(\Phi,R)$ and the unipotent radical $U^-=U^-(\Phi,R)$ of the opposite Borel subgroup $B^-=B^-(\Phi,R)$. So far, the record over a finite field was established in a 2010 paper by Babai, Nikolov, and Pyber, where they prove that a group of Lie type admits unitriangular factorisation $G=UU^-UU^-U$ of length 5. Their proof invokes deep analytic and combinatorial tools. In the present paper we notice that from the work of Bass and Tavgen one immediately gets a much more general result, asserting that over any ring of stable rank 1 one has unitriangular factorisation $G=UU^-UU^-$ of length 4. Moreover, we give a detailed survey of triangular factorisations, prove some related results, discuss prospects of generalisation to other classes of rings, and state several unsolved problems. Another main result of the present paper asserts that, in the assumption of the Generalised Riemann's Hypothesis, Chevalley groups over the ring $\mathbb Z[\frac1p]$ admit unitriangular factorisation $G=UU^-UU^-UU^-$ of length 6. Otherwise, the best length estimate for Hasse domains with infinite multiplicative groups that follows from the work of Cooke and Weinberger, gives 9 factors.
@article{ZNSL_2011_388_a1,
     author = {N. A. Vavilov and A. V. Smolensky and B. Sury},
     title = {Unitriangular factorisations of {Chevalley} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--47},
     year = {2011},
     volume = {388},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - A. V. Smolensky
AU  - B. Sury
TI  - Unitriangular factorisations of Chevalley groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 17
EP  - 47
VL  - 388
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a1/
LA  - ru
ID  - ZNSL_2011_388_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A A. V. Smolensky
%A B. Sury
%T Unitriangular factorisations of Chevalley groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 17-47
%V 388
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a1/
%G ru
%F ZNSL_2011_388_a1
N. A. Vavilov; A. V. Smolensky; B. Sury. Unitriangular factorisations of Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 17-47. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a1/

[1] Kh. Bass, Dzh. Milnor, Zh.-P Serr, “Reshenie kongruents-problemy dlya $\mathrm{SL}_n$ ($n\ge3$) i $\mathrm{Sp}_{2n}$ ($n\ge2$)”, Matematika. Period. sb. perev. in. statei, 14:6 (1970), 64–128 ; Математика. Период. сб. перев. ин. статей, 15:1 (1971), 44–60 | Zbl | Zbl

[2] N. A. Vavilov, “Parabolicheskie podgruppy grupp Shevalle nad kommutativnym koltsom”, Zap. nauchn. semin. LOMI, 116, 1982, 20–43 | MR | Zbl

[3] N. A. Vavilov, S. S. Sinchuk, “Razlozheniya tipa Dennisa–Vasershteina”, Zap. nauchn. semin. POMI, 375, 2010, 48–60 | MR | Zbl

[4] N. A. Vavilov, S. S. Sinchuk, “Parabolicheskie faktorizatsii rasschepimykh klassicheskikh grupp”, Algebra i Analiz, 23:4 (2011), 1–30

[5] A. Yu. Luzgarev, A. K. Stavrova, “Sovershennost elementarnoi podgruppy izotropnoi reduktivnoi gruppy”, Algebra i analiz, 23:5 (2011), 140–154 | MR

[6] V. A. Petrov, A. K. Stavrova, “Elementarnye podgruppy izotropnykh reduktivnykh grupp”, Algebra i Analiz, 20:4 (2008), 160–188 | MR

[7] Zh.-P. Serr, “Problema kongruents-podgrupp dlya $\mathrm{SL}_2$”, Matematika. Period. sb. perev. in. statei, 15:6 (1971), 12–45

[8] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[9] O. I. Tavgen, “Konechnaya shirina arifmeticheskikh grupp Shevalle ranga $\ge2$”, Dokl. AN SSSR, 310:4 (1990), 802–806 | MR | Zbl

[10] O. I. Tavgen, “Ogranichennoe porozhdenie grupp Shevalle nad koltsami algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 97–122 | MR | Zbl

[11] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[12] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[13] L. Babai, N. Nikolov, L. Pyber, “Product growth and mixing in finite groups”, 19th Annual ACM–SIAM Symposium on Discrete Algorithms, ACM–SIAM, 2008, 248–257 | MR | Zbl

[14] H. Bass, “$\mathrm K$-theory and stable algebra”, Publ. Math. Inst. Hautes Études Sci., 22 (1964), 5–60 | DOI | MR | Zbl

[15] D. Carter, G. Keller, “Bounded elementary generation of $\mathrm{SL}_n(\mathcal O)$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl

[16] D. Carter, G. Keller, “Elementary expressions for unimodular matrices”, Commun. Algebra, 12 (1984), 379–389 | DOI | MR | Zbl

[17] D. Carter, G. E. Keller, E. Paige, Bounded expressions in $\mathrm{SL}(2,\mathcal O)$, Preprint, Univ. Virginia, 1983

[18] R. W. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl

[19] Chen Baoquan, A. Kaufman, “3D volume rotation using shear transformations”, Graph. Models, 62 (2000), 308–322 | DOI

[20] Chen Huanyin, Chen Miaosen, “On products of three triangular matrices over associative rings”, Linear Algebra Applic., 387 (2004), 297–311 | DOI | MR | Zbl

[21] V. Chernousov, E. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part: short proof”, J. Algebra, 229 (2000), 314–332 | DOI | MR | Zbl

[22] P. M. Cohn, “On the structure of the $\mathrm{GL}_2$ of a ring”, Publ. Math. Inst. Hautes Études Sci., 30 (1967), 5–53 | DOI | MR

[23] G. Cooke, P. J. Weinberger, “On the construction of division chains in algebraic number rings, with applications to $\mathrm{SL}_2$”, Commun. Algebra, 3 (1975), 481–524 | DOI | MR | Zbl

[24] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl

[25] E. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl

[26] I. V. Erovenko, A. S. Rapinchuk, “Bounded generation of some $S$-arithmetic orthogonal groups”, C. R. Acad. Sci., 333:5 (2001), 395–398 | DOI | MR | Zbl

[27] F. J. Grunewald, J. Mennicke, L. N. Vaserstein, “On the groups $\mathrm{SL}_2(\mathbb Z[x])$ and $\mathrm{SL}_2(K[x,y])$”, Israel J. Math., 86:1–3 (1994), 157–193 | DOI | MR | Zbl

[28] R. M. Guralnick, G. Malle, Products of conjugacy classes and fixed point spaces, arXiv: 1005.3756 | MR

[29] Hao Pengwei “Customizable triangular factorizations of matrices”, Linear Algebra Applic., 382 (2004), 135–154 | DOI | MR | Zbl

[30] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Springer Lect. Notes Math., 966, 1982, 357–361 | DOI | MR | Zbl

[31] T. J. Laffey, Expressing unipotent matrices over rings as products of involutions, Preprint, Univ. Dublin, 2010 | MR

[32] T. J. Laffey, Lectures on integer matrices, Beijing, 2010, 38 pp.

[33] Lei Yang, Hao Pengwei, Wu Dapeng, “Stabilization and optimization of PLUS factorization and its application to image coding”, J. Visual Communication Image Representation, 22:1 (2011), 9–22 | DOI | Zbl

[34] M. Larsen, A. Shalev, “Word maps and Waring type problems”, J. Amer. Math. Soc., 22 (2009), 437–466 | DOI | MR | Zbl

[35] H. W. Lenstra (jr.), P. Moree, P. Stevenhagen, Character sums for primitive root densities, 2011 (to appear) | Zbl

[36] M. Liebeck, A. Shalev, “Classical groups, probabilistic methods, and the $(2,3)$-generation problem”, Ann. Math., 144:1 (1996), 77–125 | DOI | MR | Zbl

[37] M. Liebeck, A. Shalev, “Diameteres of finite simple groups: sharp bounds and applications”, Ann. Math., 154 (2001), 383–406 | DOI | MR | Zbl

[38] M. Liebeck, N. Nikolov, A. Shalev, “Groups of Lie type as products of $\mathrm{SL}_2$ subgroups”, J. Algebra, 326 (2011), 201–207 | DOI | MR | Zbl

[39] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “The Ore conjecture”, J. Europ. Math. Soc., 12 (2010), 939–1008 | DOI | MR | Zbl

[40] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Products of squares in finite simple groups”, Proc. Amer. Math. Soc., 2011 (to appear)

[41] M. Liebeck, L. Pyber, “Finite linear groups and bounded generation”, Duke Math. J., 107 (2001), 159–171 | DOI | MR | Zbl

[42] B. Liehl, “Beschränkte Wortlänge in $\mathrm{SL}_2$”, Math. Z., 186 (1984), 509–524 | DOI | MR | Zbl

[43] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[44] P. Moree, “On primes in arithmetic progression having a prescribed primitive root”, J. Number Theory, 78 (1999), 85–98 | DOI | MR | Zbl

[45] P. Moree, “On primes in arithmetic progression having a prescribed primitive root. II”, Funct. Approx. Comment. Math., 39 (2008), 133–144 | DOI | MR | Zbl

[46] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl

[47] K. R. Nagarajan, M. P. Devaasahayam, T. Soundararajan, “Products of three triangular matrices over commutative rings”, Linear Algebra Applic., 348 (2002), 1–6 | DOI | MR | Zbl

[48] N. Nikolov, “A product decomposition for the classical quasisimple groups”, J. Group Theory, 10 (2007), 43–53 | DOI | MR | Zbl

[49] N. Nikolov, L. Pyber, Product decomposition of quasirandom groups and a Jordan type theorem, 2007, arXiv: math/0703343 | MR

[50] A. Paeth, “A fast algorithm for general raster rotation”, Graphics Gems, Acad. Press, 1990, 179–195 | DOI

[51] A. S. Rapinchuk, I. A. Rapinchuk, Centrality of the congruence kernel for elementary subgroups of Chevalley groups of rank $>1$ over Noetherian rings, 2010, 12 pp., arXiv: 1007.2261v1[math.GR] | MR

[52] A. Shalev, “Commutators, words, conjugacy classes, and character methods”, Turk. J. Math., 31 (2007), 131–148 | MR | Zbl

[53] A. Shalev, “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Ann. Math., 170:3 (2009), 1383–1416 | DOI | MR | Zbl

[54] R. W. Sharpe, “On the structure of the Steinberg group $\mathrm{St}(\Lambda)$”, J. Algebra, 68 (1981), 453–467 | DOI | MR | Zbl

[55] She Yiyuan, Hao Pengwei, “On the necessity and sufficiency of PLUS factorizations”, Linear Algebra Applic., 400 (2005), 193–202 | DOI | MR | Zbl

[56] S. Sinchuk, N. Vavilov, “Parabolic factorisations of exceptional Chevalley groups”, St. Petersburg Math. J.

[57] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-theory, 17 (1999), 295–302 | DOI | MR | Zbl

[58] M. R. Stein, “Surjective stability in dimension 0 for $\mathrm K_2$ and related functors”, Trans. Amer. Math. Soc., 178 (1973), 176–191 | MR

[59] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel Math. J., 2011 (to appear) , 20 pp. | MR

[60] G. Strang, “Every unit matrix is a $LULU$”, Linear Algebra Applic., 265 (1997), 165–172 | DOI | MR | Zbl

[61] O. I. Tavgen, “Bounded generation of normal and twisted Chevalley groups over the rings of $S$-integers”, Contemp. Math., 131:1 (1992), 409–421 | DOI | MR | Zbl

[62] T. Toffoli, “Almost every unit matrix is a $ULU$”, Linear Algebra Applic., 259 (1997), 31–38 | DOI | MR | Zbl

[63] T. Toffoli, J. Quick, “Three dimensional rotations by three shears”, Graphical Models Image Processing, 59 (1997), 89–96 | DOI

[64] L. N. Vaserstein, “Bass's first stable range condition”, J. Pure Appl. Algebra, 34:2–3 (1984), 319–330 | DOI | MR | Zbl

[65] L. N. Vaserstein, E. Wheland, “Commutators and companion matrices over rings of stable rank 1”, Linear Algebra Appl., 142 (1990), 263–277 | DOI | MR | Zbl

[66] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima – 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[67] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR