@article{ZNSL_2011_388_a1,
author = {N. A. Vavilov and A. V. Smolensky and B. Sury},
title = {Unitriangular factorisations of {Chevalley} groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--47},
year = {2011},
volume = {388},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a1/}
}
N. A. Vavilov; A. V. Smolensky; B. Sury. Unitriangular factorisations of Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 21, Tome 388 (2011), pp. 17-47. http://geodesic.mathdoc.fr/item/ZNSL_2011_388_a1/
[1] Kh. Bass, Dzh. Milnor, Zh.-P Serr, “Reshenie kongruents-problemy dlya $\mathrm{SL}_n$ ($n\ge3$) i $\mathrm{Sp}_{2n}$ ($n\ge2$)”, Matematika. Period. sb. perev. in. statei, 14:6 (1970), 64–128 ; Математика. Период. сб. перев. ин. статей, 15:1 (1971), 44–60 | Zbl | Zbl
[2] N. A. Vavilov, “Parabolicheskie podgruppy grupp Shevalle nad kommutativnym koltsom”, Zap. nauchn. semin. LOMI, 116, 1982, 20–43 | MR | Zbl
[3] N. A. Vavilov, S. S. Sinchuk, “Razlozheniya tipa Dennisa–Vasershteina”, Zap. nauchn. semin. POMI, 375, 2010, 48–60 | MR | Zbl
[4] N. A. Vavilov, S. S. Sinchuk, “Parabolicheskie faktorizatsii rasschepimykh klassicheskikh grupp”, Algebra i Analiz, 23:4 (2011), 1–30
[5] A. Yu. Luzgarev, A. K. Stavrova, “Sovershennost elementarnoi podgruppy izotropnoi reduktivnoi gruppy”, Algebra i analiz, 23:5 (2011), 140–154 | MR
[6] V. A. Petrov, A. K. Stavrova, “Elementarnye podgruppy izotropnykh reduktivnykh grupp”, Algebra i Analiz, 20:4 (2008), 160–188 | MR
[7] Zh.-P. Serr, “Problema kongruents-podgrupp dlya $\mathrm{SL}_2$”, Matematika. Period. sb. perev. in. statei, 15:6 (1971), 12–45
[8] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl
[9] O. I. Tavgen, “Konechnaya shirina arifmeticheskikh grupp Shevalle ranga $\ge2$”, Dokl. AN SSSR, 310:4 (1990), 802–806 | MR | Zbl
[10] O. I. Tavgen, “Ogranichennoe porozhdenie grupp Shevalle nad koltsami algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 97–122 | MR | Zbl
[11] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl
[12] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl
[13] L. Babai, N. Nikolov, L. Pyber, “Product growth and mixing in finite groups”, 19th Annual ACM–SIAM Symposium on Discrete Algorithms, ACM–SIAM, 2008, 248–257 | MR | Zbl
[14] H. Bass, “$\mathrm K$-theory and stable algebra”, Publ. Math. Inst. Hautes Études Sci., 22 (1964), 5–60 | DOI | MR | Zbl
[15] D. Carter, G. Keller, “Bounded elementary generation of $\mathrm{SL}_n(\mathcal O)$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl
[16] D. Carter, G. Keller, “Elementary expressions for unimodular matrices”, Commun. Algebra, 12 (1984), 379–389 | DOI | MR | Zbl
[17] D. Carter, G. E. Keller, E. Paige, Bounded expressions in $\mathrm{SL}(2,\mathcal O)$, Preprint, Univ. Virginia, 1983
[18] R. W. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl
[19] Chen Baoquan, A. Kaufman, “3D volume rotation using shear transformations”, Graph. Models, 62 (2000), 308–322 | DOI
[20] Chen Huanyin, Chen Miaosen, “On products of three triangular matrices over associative rings”, Linear Algebra Applic., 387 (2004), 297–311 | DOI | MR | Zbl
[21] V. Chernousov, E. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part: short proof”, J. Algebra, 229 (2000), 314–332 | DOI | MR | Zbl
[22] P. M. Cohn, “On the structure of the $\mathrm{GL}_2$ of a ring”, Publ. Math. Inst. Hautes Études Sci., 30 (1967), 5–53 | DOI | MR
[23] G. Cooke, P. J. Weinberger, “On the construction of division chains in algebraic number rings, with applications to $\mathrm{SL}_2$”, Commun. Algebra, 3 (1975), 481–524 | DOI | MR | Zbl
[24] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl
[25] E. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl
[26] I. V. Erovenko, A. S. Rapinchuk, “Bounded generation of some $S$-arithmetic orthogonal groups”, C. R. Acad. Sci., 333:5 (2001), 395–398 | DOI | MR | Zbl
[27] F. J. Grunewald, J. Mennicke, L. N. Vaserstein, “On the groups $\mathrm{SL}_2(\mathbb Z[x])$ and $\mathrm{SL}_2(K[x,y])$”, Israel J. Math., 86:1–3 (1994), 157–193 | DOI | MR | Zbl
[28] R. M. Guralnick, G. Malle, Products of conjugacy classes and fixed point spaces, arXiv: 1005.3756 | MR
[29] Hao Pengwei “Customizable triangular factorizations of matrices”, Linear Algebra Applic., 382 (2004), 135–154 | DOI | MR | Zbl
[30] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Springer Lect. Notes Math., 966, 1982, 357–361 | DOI | MR | Zbl
[31] T. J. Laffey, Expressing unipotent matrices over rings as products of involutions, Preprint, Univ. Dublin, 2010 | MR
[32] T. J. Laffey, Lectures on integer matrices, Beijing, 2010, 38 pp.
[33] Lei Yang, Hao Pengwei, Wu Dapeng, “Stabilization and optimization of PLUS factorization and its application to image coding”, J. Visual Communication Image Representation, 22:1 (2011), 9–22 | DOI | Zbl
[34] M. Larsen, A. Shalev, “Word maps and Waring type problems”, J. Amer. Math. Soc., 22 (2009), 437–466 | DOI | MR | Zbl
[35] H. W. Lenstra (jr.), P. Moree, P. Stevenhagen, Character sums for primitive root densities, 2011 (to appear) | Zbl
[36] M. Liebeck, A. Shalev, “Classical groups, probabilistic methods, and the $(2,3)$-generation problem”, Ann. Math., 144:1 (1996), 77–125 | DOI | MR | Zbl
[37] M. Liebeck, A. Shalev, “Diameteres of finite simple groups: sharp bounds and applications”, Ann. Math., 154 (2001), 383–406 | DOI | MR | Zbl
[38] M. Liebeck, N. Nikolov, A. Shalev, “Groups of Lie type as products of $\mathrm{SL}_2$ subgroups”, J. Algebra, 326 (2011), 201–207 | DOI | MR | Zbl
[39] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “The Ore conjecture”, J. Europ. Math. Soc., 12 (2010), 939–1008 | DOI | MR | Zbl
[40] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Products of squares in finite simple groups”, Proc. Amer. Math. Soc., 2011 (to appear)
[41] M. Liebeck, L. Pyber, “Finite linear groups and bounded generation”, Duke Math. J., 107 (2001), 159–171 | DOI | MR | Zbl
[42] B. Liehl, “Beschränkte Wortlänge in $\mathrm{SL}_2$”, Math. Z., 186 (1984), 509–524 | DOI | MR | Zbl
[43] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[44] P. Moree, “On primes in arithmetic progression having a prescribed primitive root”, J. Number Theory, 78 (1999), 85–98 | DOI | MR | Zbl
[45] P. Moree, “On primes in arithmetic progression having a prescribed primitive root. II”, Funct. Approx. Comment. Math., 39 (2008), 133–144 | DOI | MR | Zbl
[46] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl
[47] K. R. Nagarajan, M. P. Devaasahayam, T. Soundararajan, “Products of three triangular matrices over commutative rings”, Linear Algebra Applic., 348 (2002), 1–6 | DOI | MR | Zbl
[48] N. Nikolov, “A product decomposition for the classical quasisimple groups”, J. Group Theory, 10 (2007), 43–53 | DOI | MR | Zbl
[49] N. Nikolov, L. Pyber, Product decomposition of quasirandom groups and a Jordan type theorem, 2007, arXiv: math/0703343 | MR
[50] A. Paeth, “A fast algorithm for general raster rotation”, Graphics Gems, Acad. Press, 1990, 179–195 | DOI
[51] A. S. Rapinchuk, I. A. Rapinchuk, Centrality of the congruence kernel for elementary subgroups of Chevalley groups of rank $>1$ over Noetherian rings, 2010, 12 pp., arXiv: 1007.2261v1[math.GR] | MR
[52] A. Shalev, “Commutators, words, conjugacy classes, and character methods”, Turk. J. Math., 31 (2007), 131–148 | MR | Zbl
[53] A. Shalev, “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Ann. Math., 170:3 (2009), 1383–1416 | DOI | MR | Zbl
[54] R. W. Sharpe, “On the structure of the Steinberg group $\mathrm{St}(\Lambda)$”, J. Algebra, 68 (1981), 453–467 | DOI | MR | Zbl
[55] She Yiyuan, Hao Pengwei, “On the necessity and sufficiency of PLUS factorizations”, Linear Algebra Applic., 400 (2005), 193–202 | DOI | MR | Zbl
[56] S. Sinchuk, N. Vavilov, “Parabolic factorisations of exceptional Chevalley groups”, St. Petersburg Math. J.
[57] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-theory, 17 (1999), 295–302 | DOI | MR | Zbl
[58] M. R. Stein, “Surjective stability in dimension 0 for $\mathrm K_2$ and related functors”, Trans. Amer. Math. Soc., 178 (1973), 176–191 | MR
[59] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel Math. J., 2011 (to appear) , 20 pp. | MR
[60] G. Strang, “Every unit matrix is a $LULU$”, Linear Algebra Applic., 265 (1997), 165–172 | DOI | MR | Zbl
[61] O. I. Tavgen, “Bounded generation of normal and twisted Chevalley groups over the rings of $S$-integers”, Contemp. Math., 131:1 (1992), 409–421 | DOI | MR | Zbl
[62] T. Toffoli, “Almost every unit matrix is a $ULU$”, Linear Algebra Applic., 259 (1997), 31–38 | DOI | MR | Zbl
[63] T. Toffoli, J. Quick, “Three dimensional rotations by three shears”, Graphical Models Image Processing, 59 (1997), 89–96 | DOI
[64] L. N. Vaserstein, “Bass's first stable range condition”, J. Pure Appl. Algebra, 34:2–3 (1984), 319–330 | DOI | MR | Zbl
[65] L. N. Vaserstein, E. Wheland, “Commutators and companion matrices over rings of stable rank 1”, Linear Algebra Appl., 142 (1990), 263–277 | DOI | MR | Zbl
[66] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima – 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl
[67] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR