@article{ZNSL_2011_387_a7,
author = {A. L. Chistov},
title = {Effective construction of a~nonsingular in codimension one algebraic variety over a~zero-characteristic ground field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {167--188},
year = {2011},
volume = {387},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a7/}
}
TY - JOUR AU - A. L. Chistov TI - Effective construction of a nonsingular in codimension one algebraic variety over a zero-characteristic ground field JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 167 EP - 188 VL - 387 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a7/ LA - en ID - ZNSL_2011_387_a7 ER -
A. L. Chistov. Effective construction of a nonsingular in codimension one algebraic variety over a zero-characteristic ground field. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 167-188. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a7/
[1] A. L. Chistov, “Polynomial complexity of the Newton–Puiseux algorithm”, Lecture Notes in Computer Science, 233, Springer, 1986, 247–255 | DOI | MR
[2] A. L. Chistov, “Polynomial-time algorithms for computational problems in the theory of algebraic curves”, Zap. nauchn. semin. POMI, 176, 1989, 127–150 | MR | Zbl
[3] A. L. Chistov, “An overview of effective normalization of a nonsingular in codimension one projective algebraic variety”, Zap. nauchn. semin. POMI, 373, 2009, 295–317 | MR
[4] A. L. Chistov, “Polynomial-time factoring polynomials over local fields”, Zap. nuchn. semin. POMI, 192, 1991, 112–148 | MR | Zbl
[5] A. L. Chistov, “The complexity of constructing the ring of integers of a global field”, Dokl. Akad. Nauk SSSR, 306:5 (1989), 1063–1067 | MR | Zbl
[6] A. L. Chistov, A deterministic polynomial-time algorithm for the first Bertini theorem, Preprint, St. Petersburg Mathematical Society, 2004 http://www.MathSoc.spb.ru | MR
[7] A. L. Chistov, “Effective Construction of a Nonsingular in Codimension One Algebraic Variety”, Polynomial Computer Algebra, Theses of Talks, 2010, 15–18
[8] A. L. Chistov, “Polynomial complexity algorithm for factoring polynomials and constructing components of a variety in subexponential time”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | MR | Zbl