Effective construction of a~nonsingular in codimension one algebraic variety over a~zero-characteristic ground field
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 167-188
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $k$ be a field of zero-characteristic finitely generated over a primitive subfield. Let $f$ be a polynomial of degree at most $d$ in $n$ variables with coefficients from $k$ and irreducible over an algebraic closure $\overline k$. Then we construct a nonsingular in codimension one algebraic variety $V$ and a finite birational isomorphism $V\to\mathcal Z(f)$ where $\mathcal Z(f)$ is the hypersurface of all common zeroes of the polynomial $f$ in the affine space. The working time of the algorithm for constructing $V$ is polynomial in the size of the input.
@article{ZNSL_2011_387_a7,
author = {A. L. Chistov},
title = {Effective construction of a~nonsingular in codimension one algebraic variety over a~zero-characteristic ground field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {167--188},
publisher = {mathdoc},
volume = {387},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a7/}
}
TY - JOUR AU - A. L. Chistov TI - Effective construction of a~nonsingular in codimension one algebraic variety over a~zero-characteristic ground field JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 167 EP - 188 VL - 387 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a7/ LA - en ID - ZNSL_2011_387_a7 ER -
%0 Journal Article %A A. L. Chistov %T Effective construction of a~nonsingular in codimension one algebraic variety over a~zero-characteristic ground field %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 167-188 %V 387 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a7/ %G en %F ZNSL_2011_387_a7
A. L. Chistov. Effective construction of a~nonsingular in codimension one algebraic variety over a~zero-characteristic ground field. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 167-188. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a7/