Correct and self-adjoint problems for biquadratic operators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 145-162
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we continue the theme which has been investigated in [11, 12] and [13] and we present a simple method to prove correctness and self-adjointness of the operators of the form $B^4$ corresponding to some boundary value problems. We also give representations for the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples, Derive and Mathematica were used.
@article{ZNSL_2011_387_a5,
author = {I. N. Parasidis and P. C. Tsekrekos and T. G. Lokkas},
title = {Correct and self-adjoint problems for biquadratic operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--162},
publisher = {mathdoc},
volume = {387},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/}
}
TY - JOUR AU - I. N. Parasidis AU - P. C. Tsekrekos AU - T. G. Lokkas TI - Correct and self-adjoint problems for biquadratic operators JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 145 EP - 162 VL - 387 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/ LA - en ID - ZNSL_2011_387_a5 ER -
I. N. Parasidis; P. C. Tsekrekos; T. G. Lokkas. Correct and self-adjoint problems for biquadratic operators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 145-162. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/