Correct and self-adjoint problems for biquadratic operators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 145-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we continue the theme which has been investigated in [11, 12] and [13] and we present a simple method to prove correctness and self-adjointness of the operators of the form $B^4$ corresponding to some boundary value problems. We also give representations for the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples, Derive and Mathematica were used.
@article{ZNSL_2011_387_a5,
     author = {I. N. Parasidis and P. C. Tsekrekos and T. G. Lokkas},
     title = {Correct and self-adjoint problems for biquadratic operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--162},
     year = {2011},
     volume = {387},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/}
}
TY  - JOUR
AU  - I. N. Parasidis
AU  - P. C. Tsekrekos
AU  - T. G. Lokkas
TI  - Correct and self-adjoint problems for biquadratic operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 145
EP  - 162
VL  - 387
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/
LA  - en
ID  - ZNSL_2011_387_a5
ER  - 
%0 Journal Article
%A I. N. Parasidis
%A P. C. Tsekrekos
%A T. G. Lokkas
%T Correct and self-adjoint problems for biquadratic operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 145-162
%V 387
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/
%G en
%F ZNSL_2011_387_a5
I. N. Parasidis; P. C. Tsekrekos; T. G. Lokkas. Correct and self-adjoint problems for biquadratic operators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 145-162. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/

[1] M. G. Krein, “The theory of self-adjoint extensions of semi-bounded Hermitian operators and its applications”, Mat. Sb., 20(62):3 (1947), 431–495 | MR | Zbl

[2] M. I. Vishik, “On general Boundary Value Problems for Elliptical Differential equations”, Trudy Moskov. Mat. Obshch., 1, 1952, 187–246 | Zbl

[3] E. A. Coddington, “Self-adjoint subspace extensions of nondensely defined symmetric operators”, Adv. Math., 14 (1974), 309–332 | DOI | MR | Zbl

[4] E. A. Coddington, A. Dijksma, “Adjoint subspaces in Banach spaces with Applications to ordinary differential subspaces”, J. Diff. Equat., 20 (1976), 473–526 | DOI | MR | Zbl

[5] V. I. Gorbachuk, M. L. Gorbachuk, Boundary Value Problems for Operator Differential equations, Kluwer, Dordrecht, 1991 | MR | Zbl

[6] A. N. Kochubei, “Extensions of positive definite symmetric operators”, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 3 (1979), 168–171 | MR

[7] A. A. Dezin, General aspects of Boundary Value problems, in Russian, Moscow, 1980

[8] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “About Restrictions and Extensions of operators”, Dokl. Akad. Nauk SSSR, 271:6 (1983), 1307–1310 | MR | Zbl

[9] R. O. Oinarov, I. N. Parasidi, “Correct extensions of operators with finite defect in Banach spaces”, Izv. Akad. Nauk Kazakh. SSR, 5 (1988), 42–46 | MR

[10] I. N. Parasidis, P. C. Tsekrekos, “Correct self-adjoint and positive extensions of nondensely defined symmetric operators”, Abstract and Applied Analysis (Hindawi Publishing Corporation), 2005:7 (2005), 767–790 | DOI | MR

[11] I. N. Parasidis, P. C. Tsekrekos, “Some quadratic correct extensions of minimal operators in Banach spaces”, Operators and Matrices, 4:2 (2010), 225–243 | DOI | MR | Zbl

[12] I. N. Parasidis, P. C. Tsekrekos, “Correct and self-adjoint problems for quadratic operators”, Eurasian Mathematical Journal, 1:2 (2010), 122–135 | MR | Zbl

[13] I. N. Parasidis, P. C. Tsekrekos, Th. G. Lokkas, “Correct and self-adjoint problems with cubic operators”, Journal of Mathematical Sciences, 166:2 (2010), 420–427 | DOI | MR