Correct and self-adjoint problems for biquadratic operators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 145-162

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue the theme which has been investigated in [11, 12] and [13] and we present a simple method to prove correctness and self-adjointness of the operators of the form $B^4$ corresponding to some boundary value problems. We also give representations for the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples, Derive and Mathematica were used.
@article{ZNSL_2011_387_a5,
     author = {I. N. Parasidis and P. C. Tsekrekos and T. G. Lokkas},
     title = {Correct and self-adjoint problems for biquadratic operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--162},
     publisher = {mathdoc},
     volume = {387},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/}
}
TY  - JOUR
AU  - I. N. Parasidis
AU  - P. C. Tsekrekos
AU  - T. G. Lokkas
TI  - Correct and self-adjoint problems for biquadratic operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 145
EP  - 162
VL  - 387
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/
LA  - en
ID  - ZNSL_2011_387_a5
ER  - 
%0 Journal Article
%A I. N. Parasidis
%A P. C. Tsekrekos
%A T. G. Lokkas
%T Correct and self-adjoint problems for biquadratic operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 145-162
%V 387
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/
%G en
%F ZNSL_2011_387_a5
I. N. Parasidis; P. C. Tsekrekos; T. G. Lokkas. Correct and self-adjoint problems for biquadratic operators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 145-162. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a5/