@article{ZNSL_2011_387_a2,
author = {N. N. Vasiliev and M. A. Rybalkin},
title = {Permutation binomials and their groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--101},
year = {2011},
volume = {387},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a2/}
}
N. N. Vasiliev; M. A. Rybalkin. Permutation binomials and their groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 83-101. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a2/
[1] R. Lidl, G. L. Mullen,, “When does a polynomial over a finite field permute the elements of the field?”, The American Mathematical Monthly, 95 (1988), 243 | DOI | MR | Zbl
[2] D. Wan, R. Lidl, “Permutation polynomials of the form $x^rf(x^{(q-1)/d})$ and their group structure?”, Monatshefte für Mathematik, 112 (1991), 149 | DOI | MR | Zbl
[3] A. Akbary, Q. Wang, “On polynomials of the form $x^rf(x^{(q-1)/l})$”, International Journal of Mathematics and Mathematical Sciences, 2007 (2007), Article ID 23408, 7 pp. | DOI | MR | Zbl
[4] M. E. Zieve, On some permutation polynomials over $\mathbb F_q$ of the form $x^rh(x^{((q-1)/d))})$, 2007, arXiv: 0707.1110 | MR
[5] A. M. Masuda, M. E. Zieve, Permutation binomials over finite fields, 2007, arXiv: 0707.1108 | MR
[6] Q. Wang, “On inverse permutation polynomials”, Finite Fields and Their Applications, 15 (2009), 207 | DOI | MR | Zbl
[7] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976 | MR
[8] J. M. Pollard, “Theorems on factorization and primality testing”, Mathematical Proceedings of the Cambridge Philosophical Society, 76 (1974), 521 | DOI | MR | Zbl
[9] R. L. Rivest, R. D. Silverman, “Are 'Strong' Primes Needed for RSA?”, Seminars Proceedings, The 1997 RSA Laboratories Seminar Series, 1999 http://eprint.iacr.org/2001/007