Permutation binomials and their groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 83-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to studying properties of permutation binomials over finite fields and studying possibility to use permutation binomials as enryption function. We present permutation binomials enumeratation algorithm. Using this algorithm all permutation binomials for finite field up to order 15000 were generated. Using this data we investigate groups, generated by permutation binomials and found that over some finite fields $\mathbb F_q$ every bijective function over $[1..q-1]$ can be represented as composition of binomials. We study possibility of permutaion binomials generation over large prime fields. And we prooved that RSA generalization using permutation binomials isn't secure.
@article{ZNSL_2011_387_a2,
     author = {N. N. Vasiliev and M. A. Rybalkin},
     title = {Permutation binomials and their groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--101},
     year = {2011},
     volume = {387},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a2/}
}
TY  - JOUR
AU  - N. N. Vasiliev
AU  - M. A. Rybalkin
TI  - Permutation binomials and their groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 83
EP  - 101
VL  - 387
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a2/
LA  - ru
ID  - ZNSL_2011_387_a2
ER  - 
%0 Journal Article
%A N. N. Vasiliev
%A M. A. Rybalkin
%T Permutation binomials and their groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 83-101
%V 387
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a2/
%G ru
%F ZNSL_2011_387_a2
N. N. Vasiliev; M. A. Rybalkin. Permutation binomials and their groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 83-101. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a2/

[1] R. Lidl, G. L. Mullen,, “When does a polynomial over a finite field permute the elements of the field?”, The American Mathematical Monthly, 95 (1988), 243 | DOI | MR | Zbl

[2] D. Wan, R. Lidl, “Permutation polynomials of the form $x^rf(x^{(q-1)/d})$ and their group structure?”, Monatshefte für Mathematik, 112 (1991), 149 | DOI | MR | Zbl

[3] A. Akbary, Q. Wang, “On polynomials of the form $x^rf(x^{(q-1)/l})$”, International Journal of Mathematics and Mathematical Sciences, 2007 (2007), Article ID 23408, 7 pp. | DOI | MR | Zbl

[4] M. E. Zieve, On some permutation polynomials over $\mathbb F_q$ of the form $x^rh(x^{((q-1)/d))})$, 2007, arXiv: 0707.1110 | MR

[5] A. M. Masuda, M. E. Zieve, Permutation binomials over finite fields, 2007, arXiv: 0707.1108 | MR

[6] Q. Wang, “On inverse permutation polynomials”, Finite Fields and Their Applications, 15 (2009), 207 | DOI | MR | Zbl

[7] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976 | MR

[8] J. M. Pollard, “Theorems on factorization and primality testing”, Mathematical Proceedings of the Cambridge Philosophical Society, 76 (1974), 521 | DOI | MR | Zbl

[9] R. L. Rivest, R. D. Silverman, “Are 'Strong' Primes Needed for RSA?”, Seminars Proceedings, The 1997 RSA Laboratories Seminar Series, 1999 http://eprint.iacr.org/2001/007