The yoga of commutators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 53-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we discuss some recent versions of localization methods for calculations in the groups of points of algebraic-like and classical-like groups. Namely, we describe relative localization, universal localization, and enhanced versions of localization-completion. Apart from the general strategic description of these methods, we state some typical technical results of the conjugation calculus and the commutator calculus. Also, we state several recent results obtained therewith, such as relative standard commutator formulae, bounded width of commutators, with respect to the elementary generators, and nilpotent filtrations of congruence subgroups. Overall, this shows that localization methods can be much more efficient, than expected.
@article{ZNSL_2011_387_a1,
     author = {R. Hazrat and A. Stepanov and N. Vavilov and Z. Zhang},
     title = {The yoga of commutators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--82},
     year = {2011},
     volume = {387},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/}
}
TY  - JOUR
AU  - R. Hazrat
AU  - A. Stepanov
AU  - N. Vavilov
AU  - Z. Zhang
TI  - The yoga of commutators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 53
EP  - 82
VL  - 387
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/
LA  - en
ID  - ZNSL_2011_387_a1
ER  - 
%0 Journal Article
%A R. Hazrat
%A A. Stepanov
%A N. Vavilov
%A Z. Zhang
%T The yoga of commutators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 53-82
%V 387
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/
%G en
%F ZNSL_2011_387_a1
R. Hazrat; A. Stepanov; N. Vavilov; Z. Zhang. The yoga of commutators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 53-82. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/

[1] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1308 | DOI | MR

[2] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR | Zbl

[3] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl

[4] A. Bak, “Subgroups of the general linear group normalized by relative elementary groups”, Lect. Notes Math., 967, Springer, Berlin, 1982, 1–22 | DOI | MR

[5] A. Bak, “Non-Abelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, $\mathrm K$–Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[6] A. Bak, R. Basu, R. A. Rao, “Local-global principle for transvection groups”, Proc. Amer. Math. Soc., 138:4 (2010), 1191–1204 | DOI | MR | Zbl

[7] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by Abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[8] A. Bak, N. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Phil. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[9] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[10] R. Basu, R. A. Rao, R. Khanna, “On Quillen's local global principle”, Contemp. Math., 390 (2005), 17–30 | DOI | MR | Zbl

[11] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl

[12] R. K. Dennis, L. N. Vaserstein, “Commutators in linear groups”, $\mathrm K$-theory, 2 (1989), 761–767 | DOI | MR | Zbl

[13] E. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl

[14] G. Habdank, A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups, Dissertation, Universität Bielefeld, 1987, 71 pp.

[15] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl

[16] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm K$-theory, Springer, Berlin et al., 1989 | MR | Zbl

[17] R. Hazrat, “Dimension theory and nonstable $\mathrm K_1$ of quadratic module”, $\mathrm K$-theory, 27 (2002), 293–327 | DOI | MR

[18] R. Hazrat, On $K$-theory of classical-like groups, Doktorarbeit, Univ. Bielefeld, 2002, 62 pp. | MR

[19] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. K-theory, 5 (2010), 603–618 | DOI | MR | Zbl

[20] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “New versions of localization method”, Topology, Geometry, and Dynamics, Rokhlin Memorial, St.-Petersburg, 2010, 114–116

[21] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, On the length of commutators in unitary groups, 2010, 24 pp.

[22] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[23] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings”, (with an appendix by Max Karoubi), J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[24] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra (to appear) , 34 pp.

[25] R. Hazrat, N. Vavilov, Zuhong Zhang, Relative commutator calculus in Chevalley groups, and applications, 2010, 28 pp.

[26] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Comm. Algebra (to appear) , 10 pp. | MR

[27] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Springer Lect. Notes Math., 966, 1982, 357–361 | DOI | MR | Zbl

[28] M.-A. Knus, Quadratic and hermitian forms over rings, Springer Verlag, Berlin et al., 1991 | MR | Zbl

[29] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R. Sbornik, 34:5 (1978), 655–669 | DOI | MR | Zbl

[30] Tsit-Yuen Lam, Serre's problem on projective modules, Springer Verlag, Berlin et. al., 2006 | MR

[31] Li Fuan, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica, 3:3 (1987), 247–255 | DOI | MR | Zbl

[32] Li Fuan, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl

[33] Li Fuan, Liu Mulan, “Generalized sandwich theorem”, $\mathrm K$-Theory, 1 (1987), 171–184 | DOI | MR

[34] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, The Ore conjecture, 2009, 81 pp. http://www.math.auckland.ac.nz/~obrien/research/ore.pdf

[35] A. Yu. Luzgarev, “Overgroups of $E(F_4,R)$ in $G(E_6,R)$”, St. Petesburg J. Math., 20:5 (2008), 148–185 | MR

[36] A. Yu. Luzgarev, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups are perfect”, St. Petersburg Math. J., 2011 (to appear) , 11 pp.

[37] A. W. Mason, “A note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, J. London Math. Soc., 11 (1974), 509–512 | DOI | MR

[38] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | DOI | MR | Zbl

[39] A. W. Mason, “A further note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Arch. Math., 37:5 (1981), 401–405 | DOI | MR | Zbl

[40] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[41] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl

[42] V. Petrov, “Overgroups of unitary groups”, $\mathrm K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl

[43] V. A. Petrov, “Odd unitary groups”, J. Math. Sci., 130:3 (2003), 4752–4766 | DOI | MR

[44] V. A. Petrov, Overgroups of classical groups, Doktorarbeit, Univ. St. Petersburg, 2005, 129 pp.

[45] V. A. Petrov, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups”, St. Petersburg Math. J., 20:4 (2008), 625–644 | DOI | MR

[46] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-theory, 17 (1999), 295–302 | DOI | MR | Zbl

[47] A. Stepanov, Universal localization in algebraic groups, 2010 http://alexei.stepanov.spb.ru/publicat.html

[48] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[49] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math. (to appear) , 20 pp. | MR

[50] A. Stepanov, N. Vavilov, You Hong, Overgroups of semi-simple subgroups via localisation-completion, 2010, 43 pp.

[51] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–252 | DOI | MR | Zbl

[52] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI | Zbl

[53] G. Taddei, Schémas de Chevalley–Demazure, fonctions représentatives et théorème de normalité, Thèse, Univ. de Genève, 1985

[54] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55:2 (1986), 693–710 | DOI | MR | Zbl

[55] M. S. Tulenbaev, “The Steinberg group of a polynomial ring”, Math. USSR Sb., 45:1 (1983), 139–154 | DOI | MR | Zbl

[56] L. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm K$-Theory (Evanston, 1980), Lect. Notes Math., 854, Springer, Berlin et al., 1981, 454–465 | MR

[57] L. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl

[58] L. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[59] L. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl

[60] L. Vaserstein, “Normal subgroups of symplectic groups over rings”, $\mathrm K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[61] L. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl

[62] L. Vaserstein, You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR

[63] N. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl

[64] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative algebras and related topics (Hiroshima – 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[65] N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, J. Math. Sci., 373 (2009), 48–72 | MR

[66] N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{Ep}(n,R)$”, St. Petersburg J. Math., 15:4 (2004), 515–543 | DOI | MR | Zbl

[67] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg Univ. Ser. 1, 41:1 (2008), 5–8 | DOI | MR | Zbl

[68] N. A. Vavilov, A. V. Stepanov, “Overgroups of semi-simple groups”, Vestnik Samara State Univ. Ser. Nat. Sci., 2008, no. 3, 51–95 | MR

[69] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ. Ser. 1, 43:1 (2010), 12–17 | DOI | MR | Zbl

[70] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Main Structure Theorems”, Vestnik Samara State Univ. Ser. Nat. Sci. (to appear) , 87 pp.

[71] Hong You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra (to appear) , 16 pp. | MR

[72] Zuhong Zhang, Lower $K$-theory of unitary groups, Doktorarbeit, Univ. Belfast, 2007, 67 pp.

[73] Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Phil. Soc., 143:3 (2007), 607–619 | MR | Zbl

[74] Zuhong Zhang, “Subnormal structure of nonstable unitary groups over rings”, J. Pure Appl. Algebra, 214 (2010), 622–628 | DOI | MR | Zbl