The yoga of commutators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 53-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we discuss some recent versions of localization methods for calculations in the groups of points of algebraic-like and classical-like groups. Namely, we describe relative localization, universal localization, and enhanced versions of localization-completion. Apart from the general strategic description of these methods, we state some typical technical results of the conjugation calculus and the commutator calculus. Also, we state several recent results obtained therewith, such as relative standard commutator formulae, bounded width of commutators, with respect to the elementary generators, and nilpotent filtrations of congruence subgroups. Overall, this shows that localization methods can be much more efficient, than expected.
@article{ZNSL_2011_387_a1,
     author = {R. Hazrat and A. Stepanov and N. Vavilov and Z. Zhang},
     title = {The yoga of commutators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--82},
     publisher = {mathdoc},
     volume = {387},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/}
}
TY  - JOUR
AU  - R. Hazrat
AU  - A. Stepanov
AU  - N. Vavilov
AU  - Z. Zhang
TI  - The yoga of commutators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 53
EP  - 82
VL  - 387
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/
LA  - en
ID  - ZNSL_2011_387_a1
ER  - 
%0 Journal Article
%A R. Hazrat
%A A. Stepanov
%A N. Vavilov
%A Z. Zhang
%T The yoga of commutators
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 53-82
%V 387
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/
%G en
%F ZNSL_2011_387_a1
R. Hazrat; A. Stepanov; N. Vavilov; Z. Zhang. The yoga of commutators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 53-82. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/