@article{ZNSL_2011_387_a1,
author = {R. Hazrat and A. Stepanov and N. Vavilov and Z. Zhang},
title = {The yoga of commutators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {53--82},
year = {2011},
volume = {387},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/}
}
R. Hazrat; A. Stepanov; N. Vavilov; Z. Zhang. The yoga of commutators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XIX, Tome 387 (2011), pp. 53-82. http://geodesic.mathdoc.fr/item/ZNSL_2011_387_a1/
[1] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1308 | DOI | MR
[2] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR | Zbl
[3] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl
[4] A. Bak, “Subgroups of the general linear group normalized by relative elementary groups”, Lect. Notes Math., 967, Springer, Berlin, 1982, 1–22 | DOI | MR
[5] A. Bak, “Non-Abelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, $\mathrm K$–Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[6] A. Bak, R. Basu, R. A. Rao, “Local-global principle for transvection groups”, Proc. Amer. Math. Soc., 138:4 (2010), 1191–1204 | DOI | MR | Zbl
[7] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by Abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl
[8] A. Bak, N. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Phil. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl
[9] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[10] R. Basu, R. A. Rao, R. Khanna, “On Quillen's local global principle”, Contemp. Math., 390 (2005), 17–30 | DOI | MR | Zbl
[11] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl
[12] R. K. Dennis, L. N. Vaserstein, “Commutators in linear groups”, $\mathrm K$-theory, 2 (1989), 761–767 | DOI | MR | Zbl
[13] E. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl
[14] G. Habdank, A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups, Dissertation, Universität Bielefeld, 1987, 71 pp.
[15] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl
[16] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm K$-theory, Springer, Berlin et al., 1989 | MR | Zbl
[17] R. Hazrat, “Dimension theory and nonstable $\mathrm K_1$ of quadratic module”, $\mathrm K$-theory, 27 (2002), 293–327 | DOI | MR
[18] R. Hazrat, On $K$-theory of classical-like groups, Doktorarbeit, Univ. Bielefeld, 2002, 62 pp. | MR
[19] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. K-theory, 5 (2010), 603–618 | DOI | MR | Zbl
[20] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “New versions of localization method”, Topology, Geometry, and Dynamics, Rokhlin Memorial, St.-Petersburg, 2010, 114–116
[21] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, On the length of commutators in unitary groups, 2010, 24 pp.
[22] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[23] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings”, (with an appendix by Max Karoubi), J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[24] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra (to appear) , 34 pp.
[25] R. Hazrat, N. Vavilov, Zuhong Zhang, Relative commutator calculus in Chevalley groups, and applications, 2010, 28 pp.
[26] R. Hazrat, Zuhong Zhang, “Generalized commutator formula”, Comm. Algebra (to appear) , 10 pp. | MR
[27] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Springer Lect. Notes Math., 966, 1982, 357–361 | DOI | MR | Zbl
[28] M.-A. Knus, Quadratic and hermitian forms over rings, Springer Verlag, Berlin et al., 1991 | MR | Zbl
[29] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R. Sbornik, 34:5 (1978), 655–669 | DOI | MR | Zbl
[30] Tsit-Yuen Lam, Serre's problem on projective modules, Springer Verlag, Berlin et. al., 2006 | MR
[31] Li Fuan, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica, 3:3 (1987), 247–255 | DOI | MR | Zbl
[32] Li Fuan, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl
[33] Li Fuan, Liu Mulan, “Generalized sandwich theorem”, $\mathrm K$-Theory, 1 (1987), 171–184 | DOI | MR
[34] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, The Ore conjecture, 2009, 81 pp. http://www.math.auckland.ac.nz/~obrien/research/ore.pdf
[35] A. Yu. Luzgarev, “Overgroups of $E(F_4,R)$ in $G(E_6,R)$”, St. Petesburg J. Math., 20:5 (2008), 148–185 | MR
[36] A. Yu. Luzgarev, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups are perfect”, St. Petersburg Math. J., 2011 (to appear) , 11 pp.
[37] A. W. Mason, “A note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, J. London Math. Soc., 11 (1974), 509–512 | DOI | MR
[38] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | DOI | MR | Zbl
[39] A. W. Mason, “A further note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Arch. Math., 37:5 (1981), 401–405 | DOI | MR | Zbl
[40] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl
[41] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl
[42] V. Petrov, “Overgroups of unitary groups”, $\mathrm K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl
[43] V. A. Petrov, “Odd unitary groups”, J. Math. Sci., 130:3 (2003), 4752–4766 | DOI | MR
[44] V. A. Petrov, Overgroups of classical groups, Doktorarbeit, Univ. St. Petersburg, 2005, 129 pp.
[45] V. A. Petrov, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups”, St. Petersburg Math. J., 20:4 (2008), 625–644 | DOI | MR
[46] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-theory, 17 (1999), 295–302 | DOI | MR | Zbl
[47] A. Stepanov, Universal localization in algebraic groups, 2010 http://alexei.stepanov.spb.ru/publicat.html
[48] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl
[49] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math. (to appear) , 20 pp. | MR
[50] A. Stepanov, N. Vavilov, You Hong, Overgroups of semi-simple subgroups via localisation-completion, 2010, 43 pp.
[51] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–252 | DOI | MR | Zbl
[52] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI | Zbl
[53] G. Taddei, Schémas de Chevalley–Demazure, fonctions représentatives et théorème de normalité, Thèse, Univ. de Genève, 1985
[54] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55:2 (1986), 693–710 | DOI | MR | Zbl
[55] M. S. Tulenbaev, “The Steinberg group of a polynomial ring”, Math. USSR Sb., 45:1 (1983), 139–154 | DOI | MR | Zbl
[56] L. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm K$-Theory (Evanston, 1980), Lect. Notes Math., 854, Springer, Berlin et al., 1981, 454–465 | MR
[57] L. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl
[58] L. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR
[59] L. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl
[60] L. Vaserstein, “Normal subgroups of symplectic groups over rings”, $\mathrm K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl
[61] L. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl
[62] L. Vaserstein, You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR
[63] N. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl
[64] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative algebras and related topics (Hiroshima – 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl
[65] N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, J. Math. Sci., 373 (2009), 48–72 | MR
[66] N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{Ep}(n,R)$”, St. Petersburg J. Math., 15:4 (2004), 515–543 | DOI | MR | Zbl
[67] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg Univ. Ser. 1, 41:1 (2008), 5–8 | DOI | MR | Zbl
[68] N. A. Vavilov, A. V. Stepanov, “Overgroups of semi-simple groups”, Vestnik Samara State Univ. Ser. Nat. Sci., 2008, no. 3, 51–95 | MR
[69] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ. Ser. 1, 43:1 (2010), 12–17 | DOI | MR | Zbl
[70] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Main Structure Theorems”, Vestnik Samara State Univ. Ser. Nat. Sci. (to appear) , 87 pp.
[71] Hong You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra (to appear) , 16 pp. | MR
[72] Zuhong Zhang, Lower $K$-theory of unitary groups, Doktorarbeit, Univ. Belfast, 2007, 67 pp.
[73] Zuhong Zhang, “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Phil. Soc., 143:3 (2007), 607–619 | MR | Zbl
[74] Zuhong Zhang, “Subnormal structure of nonstable unitary groups over rings”, J. Pure Appl. Algebra, 214 (2010), 622–628 | DOI | MR | Zbl