Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 265-280

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the conjugation action of the unitriangular subgroup $N$ of one of the following groups $\mathrm{Sp}_{2n}$, $\mathrm O_{2n}$, $\mathrm O_{2n+1}$, on the nilradical of a parabolic subalgebra in the corresponding Lie algebra. We introduce the notion of an extended base in the set of positive roots. To each root of the extended base there corresponds an invariant with respect to the adjoint action of $N$. We show that these invariants are algebraically independent. Also, we estimate trancendence degrees of these invariants. Bibl. 6 titles.
@article{ZNSL_2011_386_a7,
     author = {V. V. Sevostianova},
     title = {Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {265--280},
     publisher = {mathdoc},
     volume = {386},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a7/}
}
TY  - JOUR
AU  - V. V. Sevostianova
TI  - Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 265
EP  - 280
VL  - 386
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a7/
LA  - ru
ID  - ZNSL_2011_386_a7
ER  - 
%0 Journal Article
%A V. V. Sevostianova
%T Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 265-280
%V 386
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a7/
%G ru
%F ZNSL_2011_386_a7
V. V. Sevostianova. Invariants of the adjoint action on nil-radicals of parabolic subalgebras in $B_n$, $C_n$, $D_n$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 265-280. http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a7/