@article{ZNSL_2011_386_a6,
author = {I. M. Pevzner},
title = {Width of groups of type $\mathrm E_6$ with respect to root {elements.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {242--264},
year = {2011},
volume = {386},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a6/}
}
I. M. Pevzner. Width of groups of type $\mathrm E_6$ with respect to root elements. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 242-264. http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a6/
[1] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR
[2] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972 | MR | Zbl
[3] N. Burbaki, Gruppy i algebry Li, Glavy VII–VIII, Mir, M., 1978 | MR
[4] N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR
[5] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl
[6] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76 | MR | Zbl
[7] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR
[8] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl
[9] N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83 | MR
[10] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR
[11] A. Yu. Luzgarev, “O nadgruppakh $\mathrm E(\mathrm E_6,R)$ i $\mathrm E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. semin. POMI, 319, 2004, 216–243 | MR | Zbl
[12] A. Yu. Luzgarev, “Opisanie nadgrupp $\mathrm F_4$ v $\mathrm E_6$ nad kommutativnym koltsom”, Algebra i analiz, 20:6 (2008), 148–185 | MR
[13] O. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167 | MR
[14] O. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979
[15] I. M. Pevzner, “Geometriya kornevykh elementov v gruppakh tipa $\mathrm E_6$”, Algebra i analiz, 2011 (to appear)
[16] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov, I”, Algebra i analiz, 2011 (to appear)
[17] T. A. Springer, “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR | Zbl
[18] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl
[19] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR
[20] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003
[21] M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, I”, Invent. Math., 89:1 (1987), 159–195 | DOI | MR | Zbl
[22] M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, II”, J. London Math. Soc., 37 (1988), 275–293 | DOI | MR | Zbl
[23] M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 | DOI | MR | Zbl
[24] M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, IV”, J. Algebra, 131 (1990), 23–39 | DOI | MR | Zbl
[25] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl
[26] M. Aschbacher, “The geometry of trilinear forms”, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, Oxford, 1990, 75–84 | MR
[27] R. W. Carter, Simple groups of Lie type, Wiley, London, 1989 | MR | Zbl
[28] C. Chevalley, R. D. Schafer, “The exceptional simple Lie algebras $\mathrm F_4$ and $\mathrm E_6$”, Proc. Nat. Acad. Sci. USA, 36 (1950), 137–141 | DOI | MR | Zbl
[29] A. M. Cohen, M. W. Liebeck, J. Saxl, G. M. Seitz, “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc., 364:1 (1992), 21–48 | DOI | MR
[30] D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type $\mathrm E_6$, $\mathrm E_7$ and $\mathrm E_8$”, Communications in Algebra, 19:3 (1991), 889–903 | DOI | MR | Zbl
[31] J. Dieudonné, “Sur les générateurs des groupes classiques”, Summa Brasil. Math., 3 (1955), 149–179 | MR
[32] D. Ž. Djoković, J. G. Malzan, “Products of reflections in the general linear group over a division ring”, Linear Algebra Appl., 28 (1979), 53–62 | DOI | MR | Zbl
[33] D. Ž. Djoković, J. G. Malzan, Products of reflections in $\mathrm U(p,q)$, Mem. Amer. Math. Soc., 37, Amer. Math. Soc., Providence, RI, 1982 | MR | Zbl
[34] R. H. Dye, “Scherk's theorem on orthogonalities revisited”, Geom. Dedicata, 20:3 (1986), 349–356 | DOI | MR | Zbl
[35] E. W. Ellers, “Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries”, Abh. Math. Sem. Univ. Hamburg, 46 (1977), 97–127 | DOI | MR | Zbl
[36] E. W. Ellers, R. Frank, “Products of quasireflections and transvections over local rings”, J. Geom., 31:1–2 (1988), 69–78 | DOI | MR | Zbl
[37] E. W. Ellers, H. Ishibashi, “Factorization of transformations over a local ring”, Linear Algebra Appl., 85 (1987), 12–27 | DOI | MR
[38] E. W. Ellers, H. Lausch, “Length theorems for the general linear group of a module over a local ring”, J. Austral. Math. Soc. Ser. A, 46:1 (1989), 122–131 | DOI | MR | Zbl
[39] E. W. Ellers, H. Lausch, “Generators for classical groups of modules over local rings”, J. Geom., 39:1–2 (1990), 60–79 | DOI | MR | Zbl
[40] P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416 | MR | Zbl
[41] M. Götzky, “Unverkürzbare Produkte und Relationen in unitären Gruppen”, Math. Z., 104 (1968), 1–15 | DOI | MR | Zbl
[42] M. Götzky, “Über die Erzeugenden der engeren unitären Gruppen”, Arch. Math., 19 (1968), 383–389 | DOI | MR | Zbl
[43] H. Ishibashi, “Generators of orthogonal groups over a local valuation domain”, J. Algebra, 55:2 (1978), 302–307 | DOI | MR | Zbl
[44] H. Ishibashi, “Generators of $\mathrm{Sp}_n(V)$ over a quasisemilocal semihereditary ring”, J. Pure Appl. Algebra, 22:2 (1981), 121–129 | DOI | MR | Zbl
[45] H. Ishibashi, “Generators of orthogonal groups over valuation rings”, Canad. J. Math., 33:1 (1981), 116–128 | DOI | MR | Zbl
[46] G. Malle, J. Saxl, T. S. Weigel, “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116 | DOI | MR | Zbl
[47] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2:1 (1969), 1–62 | MR | Zbl
[48] Ch. Parker, G. E. Röhrle, Miniscule Representations, Preprint No 72, Universität Bielefeld, 1993, 12 pp. | MR | Zbl
[49] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Int. J. Algebra and Computations, 8:1 (1998), 61–97 | DOI | MR
[50] U. Spengler, H. Wolff, “Die Länge einer symplektischen Abbildung”, J. reine angew. Math., 274–275 (1975), 150–157 | MR | Zbl
[51] T. A. Springer, Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston, 1998 | MR | Zbl
[52] C. Stanley-Albarda, “A comparison of length definitions for maps of modules over local rings”, J. Geom., 53:1–2 (1995), 191–200 | DOI | MR | Zbl
[53] J. Tits, “Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples”, Publ. Math. Inst. Hautes Et. Sci., 31 (1966), 21–58 | DOI | MR
[54] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl
[55] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 204 (2000), 1–45 | MR
[56] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $E_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104 | MR | Zbl
[57] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra and Computations, 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl
[58] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR
[59] L. G. Zhou, “Scherk's theorem of orthogonal groups over a local ring. I. Expressing orthogonal transformations as the product of symmetries and a semi-symmetry”, Dongbei Shida Xuebao, 2 (1985), 17–24 | MR | Zbl