Width of groups of type $\mathrm E_6$ with respect to root elements.~II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 242-264

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider simply-connected and adjoint groups of type $\mathrm E_6$ over fields. Let $K$ be a field such that every polynomial of degree at most 6 has a root in $K$. We prove that every element of an adjoint group of type $\mathrm E_6$ over $K$ can be written as a product of at most seven root elements. Bibl. 59 titles.
@article{ZNSL_2011_386_a6,
     author = {I. M. Pevzner},
     title = {Width of groups of type $\mathrm E_6$ with respect to root {elements.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {242--264},
     publisher = {mathdoc},
     volume = {386},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a6/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Width of groups of type $\mathrm E_6$ with respect to root elements.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 242
EP  - 264
VL  - 386
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a6/
LA  - ru
ID  - ZNSL_2011_386_a6
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Width of groups of type $\mathrm E_6$ with respect to root elements.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 242-264
%V 386
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a6/
%G ru
%F ZNSL_2011_386_a6
I. M. Pevzner. Width of groups of type $\mathrm E_6$ with respect to root elements.~II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 20, Tome 386 (2011), pp. 242-264. http://geodesic.mathdoc.fr/item/ZNSL_2011_386_a6/