The order of convergence in the Stefan problem with vanishing specific heat
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 206-223

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with a two-phase Stefan problem with a small parameter $\varepsilon$ which coresponds to the specific heat of the material. We assume that the initial condition does not coincide with the value at $t=0$ of the solution to the limit problem related to $\varepsilon=0$. To remove this discrepancy, we introduce an auxiliary boundary layer type function. We prove that the solution to the two-phase Stefan problem with parameter $\varepsilon$ differs from the sum of the solution to the limit Hele–Shaw problem and the boundary layer type function by quantities of the order $O(\varepsilon)$. The estimates are obtained in Hölder norms. Bibl. 13 titles.
@article{ZNSL_2010_385_a9,
     author = {E. V. Frolova},
     title = {The order of convergence in the {Stefan} problem with vanishing specific heat},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {206--223},
     publisher = {mathdoc},
     volume = {385},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a9/}
}
TY  - JOUR
AU  - E. V. Frolova
TI  - The order of convergence in the Stefan problem with vanishing specific heat
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 206
EP  - 223
VL  - 385
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a9/
LA  - en
ID  - ZNSL_2010_385_a9
ER  - 
%0 Journal Article
%A E. V. Frolova
%T The order of convergence in the Stefan problem with vanishing specific heat
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 206-223
%V 385
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a9/
%G en
%F ZNSL_2010_385_a9
E. V. Frolova. The order of convergence in the Stefan problem with vanishing specific heat. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 206-223. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a9/