@article{ZNSL_2010_385_a6,
author = {M. Padula and V. A. Solonnikov},
title = {On the free boundary problem of magnetohydrodynamics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--186},
year = {2010},
volume = {385},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/}
}
M. Padula; V. A. Solonnikov. On the free boundary problem of magnetohydrodynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 135-186. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/
[1] P. H. Roberts, An introduction to magnetohydrodynamics, Longmans, Green and Co ltd, London, 1967 | Zbl
[2] M. Padula, “On nonlinear stability of MHD equilibrium figures”, Adv. Math. Fluid Mech., 2010, 301–331 | Zbl
[3] M. Padula, “On nonlinear stability of nonlinear pinch”, Appl. Anal. (to appear)
[4] O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds for problems of magnetohydrodynamics”, J. Math. Sci., 8 (1977), 384–422 | DOI | Zbl
[5] G. Ströhmer, “About an initial-boundary value problem from magnetohydrodynamics”, Math. Z., 209 (1992), 345–362 | DOI | MR | Zbl
[6] G. Ströhmer, “About the equations of non-stationary magnetohydrodynamics”, Nonlin. Anal., 52 (2003), 1249–1273 | DOI | MR | Zbl
[7] S. Mosconi, V. A. Solonnikov, “On a problem of magnetohydrodynamics in a multi-connected domain”, Nonlinear Analysis (to appear)
[8] V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier–Stokes equations”, Algebra Analiz (to appear)
[9] M. Padula, V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier–Stokes equations”, Probl. Mat. Anal., 50, Tamara Rozhkovskaya, 2010, 87–133
[10] V. A. Solonnikov, “On the estimates of volume and surface potentials in domains with boundaries of class $W_2^l$”, Probl. Mat. Anal., 36, 2008, 93–111 | MR | Zbl
[11] O. A. Ladyzhenskaya, V. A. Solonnikov, “Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid”, Tr. Mat. Inst. Steklov, 59, 1960, 115–173 | MR
[12] M. E. Bogovskii, “Resolution of some problems of the vector analysis connected with the operators $\mathrm{div}$ and $\mathrm{grad}$”, Trudy semin. S. L. Sobolev, 1, 1980, 5–40 | MR
[13] V. A. Solonnikov, “On the linear problem related to the stability of uniformly rotating self-gravitating liquid”, J. Math. Sci., 144:6 (2007), 4671 | DOI | MR | Zbl
[14] V. A. Solonnikov, “A-priori estimates for second order equations of parabolic type”, Tr. Mat. Inst. Steklov, 70, 1964, 133–212 | MR | Zbl
[15] R. A. Adams, Sobolev Spaces, Acad. Press, N.Y., 1975 | MR | Zbl