On the free boundary problem of magnetohydrodynamics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 135-186
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper proves the solvability of a free boundary problem of magnetohydrodynamics for a viscous incompressible fluid in a simply connected domain. The solution is obtained in Sobolev–Slobodetskii spaces $W^{2+l,1+l/2}_2$, $1/2$. Bibl. 15 titles.
@article{ZNSL_2010_385_a6,
author = {M. Padula and V. A. Solonnikov},
title = {On the free boundary problem of magnetohydrodynamics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--186},
publisher = {mathdoc},
volume = {385},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/}
}
M. Padula; V. A. Solonnikov. On the free boundary problem of magnetohydrodynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 135-186. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/