On the free boundary problem of magnetohydrodynamics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 135-186

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proves the solvability of a free boundary problem of magnetohydrodynamics for a viscous incompressible fluid in a simply connected domain. The solution is obtained in Sobolev–Slobodetskii spaces $W^{2+l,1+l/2}_2$, $1/2$. Bibl. 15 titles.
@article{ZNSL_2010_385_a6,
     author = {M. Padula and V. A. Solonnikov},
     title = {On the free boundary problem of magnetohydrodynamics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--186},
     publisher = {mathdoc},
     volume = {385},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/}
}
TY  - JOUR
AU  - M. Padula
AU  - V. A. Solonnikov
TI  - On the free boundary problem of magnetohydrodynamics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 135
EP  - 186
VL  - 385
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/
LA  - en
ID  - ZNSL_2010_385_a6
ER  - 
%0 Journal Article
%A M. Padula
%A V. A. Solonnikov
%T On the free boundary problem of magnetohydrodynamics
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 135-186
%V 385
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/
%G en
%F ZNSL_2010_385_a6
M. Padula; V. A. Solonnikov. On the free boundary problem of magnetohydrodynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 135-186. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/