On the free boundary problem of magnetohydrodynamics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 135-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper proves the solvability of a free boundary problem of magnetohydrodynamics for a viscous incompressible fluid in a simply connected domain. The solution is obtained in Sobolev–Slobodetskii spaces $W^{2+l,1+l/2}_2$, $1/2. Bibl. 15 titles.
@article{ZNSL_2010_385_a6,
     author = {M. Padula and V. A. Solonnikov},
     title = {On the free boundary problem of magnetohydrodynamics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--186},
     year = {2010},
     volume = {385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/}
}
TY  - JOUR
AU  - M. Padula
AU  - V. A. Solonnikov
TI  - On the free boundary problem of magnetohydrodynamics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 135
EP  - 186
VL  - 385
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/
LA  - en
ID  - ZNSL_2010_385_a6
ER  - 
%0 Journal Article
%A M. Padula
%A V. A. Solonnikov
%T On the free boundary problem of magnetohydrodynamics
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 135-186
%V 385
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/
%G en
%F ZNSL_2010_385_a6
M. Padula; V. A. Solonnikov. On the free boundary problem of magnetohydrodynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 135-186. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a6/

[1] P. H. Roberts, An introduction to magnetohydrodynamics, Longmans, Green and Co ltd, London, 1967 | Zbl

[2] M. Padula, “On nonlinear stability of MHD equilibrium figures”, Adv. Math. Fluid Mech., 2010, 301–331 | Zbl

[3] M. Padula, “On nonlinear stability of nonlinear pinch”, Appl. Anal. (to appear)

[4] O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds for problems of magnetohydrodynamics”, J. Math. Sci., 8 (1977), 384–422 | DOI | Zbl

[5] G. Ströhmer, “About an initial-boundary value problem from magnetohydrodynamics”, Math. Z., 209 (1992), 345–362 | DOI | MR | Zbl

[6] G. Ströhmer, “About the equations of non-stationary magnetohydrodynamics”, Nonlin. Anal., 52 (2003), 1249–1273 | DOI | MR | Zbl

[7] S. Mosconi, V. A. Solonnikov, “On a problem of magnetohydrodynamics in a multi-connected domain”, Nonlinear Analysis (to appear)

[8] V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier–Stokes equations”, Algebra Analiz (to appear)

[9] M. Padula, V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier–Stokes equations”, Probl. Mat. Anal., 50, Tamara Rozhkovskaya, 2010, 87–133

[10] V. A. Solonnikov, “On the estimates of volume and surface potentials in domains with boundaries of class $W_2^l$”, Probl. Mat. Anal., 36, 2008, 93–111 | MR | Zbl

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, “Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid”, Tr. Mat. Inst. Steklov, 59, 1960, 115–173 | MR

[12] M. E. Bogovskii, “Resolution of some problems of the vector analysis connected with the operators $\mathrm{div}$ and $\mathrm{grad}$”, Trudy semin. S. L. Sobolev, 1, 1980, 5–40 | MR

[13] V. A. Solonnikov, “On the linear problem related to the stability of uniformly rotating self-gravitating liquid”, J. Math. Sci., 144:6 (2007), 4671 | DOI | MR | Zbl

[14] V. A. Solonnikov, “A-priori estimates for second order equations of parabolic type”, Tr. Mat. Inst. Steklov, 70, 1964, 133–212 | MR | Zbl

[15] R. A. Adams, Sobolev Spaces, Acad. Press, N.Y., 1975 | MR | Zbl