@article{ZNSL_2010_385_a5,
author = {S. A. Nazarov},
title = {On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and {Wood's} anomalies},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--134},
year = {2010},
volume = {385},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/}
}
S. A. Nazarov. On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 98-134. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/
[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR
[3] C. Wilcox, Scattering theory for diffraction gratings, Springer-Verlag, Berlin, 1980 | MR
[4] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[5] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl
[6] S. A. Nazarov, “Lovushechnye mody dlya tsilindricheskogo uprugogo volnovoda s dempfiruyuschei prokladkoi”, Zhurnal vychisl. matem. i matem. fiz., 48:5 (2008), 863–881 | MR | Zbl
[7] G. Cardone, V. Minutolo, S. A. Nazarov, “Gaps in the essential spectrum of periodic elastic waveguides”, ZAMM, 89:9 (2009), 729–741 | DOI | MR | Zbl
[8] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Matem. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl
[9] S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauchn. semin. POMI, 369, 2009, 202–223 | MR
[10] S. A. Nazarov, J. H. Videman, “A sufficient condition for the existence of trapped modes for oblique waves in a two-layer fluid”, Proc. R. Soc. A, 465 (2009), 3799–3816 | DOI | MR | Zbl
[11] S. A. Nazarov, “Asimptotika lovushechnykh mod i sobstvennykh chisel pod porogom nepreryvnogo spektra volnovoda s tonkim ekraniruyuschim prepyatstviem”, Algebra i analiz (to appear)
[12] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse. 1”, Matem. sb., 190:1 (1999), 109–138 | DOI | MR | Zbl
[13] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse. II”, Matem. sb., 190:2 (1999), 43–70 | DOI | MR | Zbl
[14] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Q. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl
[15] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR | Zbl
[16] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl
[17] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. semin. POMI, 264, 2000, 66–82 | MR | Zbl
[18] R. Mittra, S. Li, Analiticheskie metody teorii volnovodov, Mir, M., 1974 | Zbl
[19] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[20] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Problemy matem. fiziki, 13, izd-vo LGU, L., 1991, 192–244 | MR
[21] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[22] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR
[23] S. Agmon, L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach spaces”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl
[24] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[25] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | Zbl
[26] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR
[27] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl
[28] S. A. Nazarov, “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zhurnal vychisl. matem. i matem. fiziki, 46:12 (2006), 2265–2276 | MR
[29] S. A. Nazarov, “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funktsionalnyi analiz i ego prilozheniya, 40:2 (2006), 20–32 | DOI | MR | Zbl
[30] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, izd-vo TGU, Tbilisi, 1981 | Zbl
[31] S. A. Nazarov, “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Trudy Sankt-Peterburg. matem. o-va, 5, 1996, 112–183
[32] V. Sibruk, Robert Vilyams Vud. Sovremennyi charodei fizicheskoi laboratorii, Gos. izd. tekhniko-teoreticheskoi literatury, M.–L., 1946