On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and Wood's anomalies
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 98-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found out for the existence and absence of an eigenvalue in the interval $(0,\pi^2)$ of the continuous spectrum of the Neumann problem for the Laplace operator in the unit strip with a thin (of width $O(\varepsilon)$) symmetric screen which, as $\varepsilon\to+0$, shrinks into a line segment perpendicular to sides of the strip. An asymptotics of this eigenvalue is constructed as well as the asymptotics of the reflection coefficient which describes Wood's anomalies, namely quick changes of the diffraction characteristics near a frequency threshold in the continuous spectrum. Bibl. 32 titles.
@article{ZNSL_2010_385_a5,
     author = {S. A. Nazarov},
     title = {On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and {Wood's} anomalies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--134},
     publisher = {mathdoc},
     volume = {385},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and Wood's anomalies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 98
EP  - 134
VL  - 385
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/
LA  - ru
ID  - ZNSL_2010_385_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and Wood's anomalies
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 98-134
%V 385
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/
%G ru
%F ZNSL_2010_385_a5
S. A. Nazarov. On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and Wood's anomalies. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 98-134. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/