On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 98-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Conditions are found out for the existence and absence of an eigenvalue in the interval $(0,\pi^2)$ of the continuous spectrum of the Neumann problem for the Laplace operator in the unit strip with a thin (of width $O(\varepsilon)$) symmetric screen which, as $\varepsilon\to+0$, shrinks into a line segment perpendicular to sides of the strip. An asymptotics of this eigenvalue is constructed as well as the asymptotics of the reflection coefficient which describes Wood's anomalies, namely quick changes of the diffraction characteristics near a frequency threshold in the continuous spectrum. Bibl. 32 titles.
@article{ZNSL_2010_385_a5,
     author = {S. A. Nazarov},
     title = {On the asymptotics of an eigenvalue of a~waveguide with thin shielding obstacle and {Wood's} anomalies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--134},
     year = {2010},
     volume = {385},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 98
EP  - 134
VL  - 385
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/
LA  - ru
ID  - ZNSL_2010_385_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 98-134
%V 385
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/
%G ru
%F ZNSL_2010_385_a5
S. A. Nazarov. On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 98-134. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a5/

[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[3] C. Wilcox, Scattering theory for diffraction gratings, Springer-Verlag, Berlin, 1980 | MR

[4] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[5] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[6] S. A. Nazarov, “Lovushechnye mody dlya tsilindricheskogo uprugogo volnovoda s dempfiruyuschei prokladkoi”, Zhurnal vychisl. matem. i matem. fiz., 48:5 (2008), 863–881 | MR | Zbl

[7] G. Cardone, V. Minutolo, S. A. Nazarov, “Gaps in the essential spectrum of periodic elastic waveguides”, ZAMM, 89:9 (2009), 729–741 | DOI | MR | Zbl

[8] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Matem. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl

[9] S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauchn. semin. POMI, 369, 2009, 202–223 | MR

[10] S. A. Nazarov, J. H. Videman, “A sufficient condition for the existence of trapped modes for oblique waves in a two-layer fluid”, Proc. R. Soc. A, 465 (2009), 3799–3816 | DOI | MR | Zbl

[11] S. A. Nazarov, “Asimptotika lovushechnykh mod i sobstvennykh chisel pod porogom nepreryvnogo spektra volnovoda s tonkim ekraniruyuschim prepyatstviem”, Algebra i analiz (to appear)

[12] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse. 1”, Matem. sb., 190:1 (1999), 109–138 | DOI | MR | Zbl

[13] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse. II”, Matem. sb., 190:2 (1999), 43–70 | DOI | MR | Zbl

[14] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Q. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl

[15] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR | Zbl

[16] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR | Zbl

[17] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. semin. POMI, 264, 2000, 66–82 | MR | Zbl

[18] R. Mittra, S. Li, Analiticheskie metody teorii volnovodov, Mir, M., 1974 | Zbl

[19] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[20] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Problemy matem. fiziki, 13, izd-vo LGU, L., 1991, 192–244 | MR

[21] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[22] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR

[23] S. Agmon, L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach spaces”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl

[24] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292

[25] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | Zbl

[26] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR

[27] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl

[28] S. A. Nazarov, “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zhurnal vychisl. matem. i matem. fiziki, 46:12 (2006), 2265–2276 | MR

[29] S. A. Nazarov, “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funktsionalnyi analiz i ego prilozheniya, 40:2 (2006), 20–32 | DOI | MR | Zbl

[30] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, izd-vo TGU, Tbilisi, 1981 | Zbl

[31] S. A. Nazarov, “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Trudy Sankt-Peterburg. matem. o-va, 5, 1996, 112–183

[32] V. Sibruk, Robert Vilyams Vud. Sovremennyi charodei fizicheskoi laboratorii, Gos. izd. tekhniko-teoreticheskoi literatury, M.–L., 1946