On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 83-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A class of sufficient conditions for local boundary regularity of suitable weak solutions of the non-stationary three-dimensional Navier–Stokes equations is discussed. The corresponding results are formulated in terms of functionals which are invariant with respect to the scaling of the Navier–Stokes equations. Bibl. 27 titles.
@article{ZNSL_2010_385_a4,
     author = {A. S. Mikhaylov},
     title = {On local regularity for suitable weak solutions of the {Navier{\textendash}Stokes} equations near the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--97},
     year = {2010},
     volume = {385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a4/}
}
TY  - JOUR
AU  - A. S. Mikhaylov
TI  - On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 83
EP  - 97
VL  - 385
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a4/
LA  - en
ID  - ZNSL_2010_385_a4
ER  - 
%0 Journal Article
%A A. S. Mikhaylov
%T On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 83-97
%V 385
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a4/
%G en
%F ZNSL_2010_385_a4
A. S. Mikhaylov. On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 83-97. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a4/

[1] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] H. J. Choe, J. L. Lewis, “On the singular set in the Navier–Stokes equations”, J. Funct. Anal., 175:2 (2000), 348–369 | DOI | MR | Zbl

[3] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Usp. Mat. Nauk, 58:2 (2003), 3–44 | DOI | MR | Zbl

[4] L. Escauriaza, G. Seregin, V. Sverak, “On backward uniquness for parabolic equations”, Arch. Rat. Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl

[5] L. Escauriaza, G. Seregin, V. Sverak, “Backward uniquness for the heat operator in half space”, Algebra and Analysis, 15:1 (2003), 201–214 | MR | Zbl

[6] E. Hopf, “Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1950), 213–231 | DOI | MR

[7] The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, 1969 | MR | Zbl

[8] O. A. Ladyzhenskaya, G. A. Seregin, “On Partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1967 | MR

[10] F.-H. Lin, “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] A. S. Mikhailov, “Local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Zap. Nauchn. Semin. POMI, 370, 2009, 73–93 | MR

[12] A. S. Mikhailov, T. N. Shilkin, “$L_{3,\infty}$ solutions to the 3D-Navier–Stokes system in the domain with a curved boundary”, Zap. Nauchn. Semin. POMI, 336, 2006, 133–152 | MR | Zbl

[13] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[14] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[15] G. A. Seregin, “Differentiability properties of weak solutions of the Navier–Stokes equations”, St. Petersburg Math. J., 14:1 (2003), 147–178 | MR | Zbl

[16] G. A. Seregin, “Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl

[17] G. A. Seregin, “Remarks on regularity of weak solutions to the Navier–Stokes system near the boundary”, Zap. Nauchn. Semin. POMI, 295, 2003, 168–179 | MR | Zbl

[18] G. A. Seregin, “On smoothness of $L_{3,\infty}$-solutions to the Navier–Stokes equations up to boundary”, Mathematische Annalen, 332 (2005), 219–238 | DOI | MR | Zbl

[19] G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary Partial Regularity for the Navier–Stokes Equations”, Zap. Nauchn. Semin. POMI, 310, 2004, 158–190 | MR | Zbl

[20] G. A. Seregin, V. Šverak, “The Navier–Stokes equations and backward uniquness”, Nonlinear Problems in Mathematical Physics, In Honor of Professor O. A. Ladyzhenskaya, v. II, International Mathematical Serie, 2, 353–366 | DOI | MR | Zbl

[21] G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Usp. Mat. Nauk, 62:3 (2007), 149–168 | DOI | MR | Zbl

[22] G. A. Seregin, “A note on local boundary regularity for the Stokes system”, Zap. Nauchn. Semin. POMI, 370, 2009, 151–159 | MR

[23] G. A. Seregin, “Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces”, J. Math. Sci., 143:2 (2007), 2961–2968 | DOI | MR

[24] A. M. S. Translations, Series II, 75, 1–117 | MR | Zbl

[25] V. A. Solonnikov, “Estimates of solutions of the nonstationary Navier–Stokes system”, Zap. Nauchn. Semin. POMI, 38, 1973, 153–231 | MR | Zbl

[26] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl

[27] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Usp. Mat. Nauk, 58:2(350) (2003), 123–156 | DOI | MR | Zbl