A regularity criterion for axially symmetric solutions to the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 54-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the axially-symmetric solutions to the Navier–Stokes equations. Assume that the radial component of velocity $(v_r)$ belongs either to $L_\infty(0,T;L_3(\Omega_0))$ or to $v_r/r$ to $L_\infty(0,T;L_{3/2}(\Omega_0))$, where $\Omega_0$ is some neighbourhood of the axis of symmetry. Assume additionally that there exist subdomains $\Omega_k$, $k=1,\dots,N$, such that $\Omega_0\subset\bigcup^N_{k=1}\Omega_k$ and assume that there exist constants $\alpha_1,\alpha_2$ such that either $\big\|v_r\big\|_{L_\infty(0,T;L_3(\Omega_k))}\le\alpha_1$ or $\big\|\frac{v_r}r\Big\|_{L_\infty(0,T;L_{3/2}(\Omega_k))}\le\alpha_2$ for $k=1,\dots,N$. Then the weak solution becomes strong ($v\in W_2^{2,1}(\Omega\times(0,T))$, $\nabla p\in L_2(\Omega\times(0,T))$). Bibl. 28 titles.
@article{ZNSL_2010_385_a2,
author = {W. Zaj\k{a}czkowski},
title = {A regularity criterion for axially symmetric solutions to the {Navier--Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--68},
publisher = {mathdoc},
volume = {385},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a2/}
}
W. Zajączkowski. A regularity criterion for axially symmetric solutions to the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 54-68. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a2/