@article{ZNSL_2010_385_a2,
author = {W. Zaj\k{a}czkowski},
title = {A regularity criterion for axially symmetric solutions to the {Navier{\textendash}Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--68},
year = {2010},
volume = {385},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a2/}
}
W. Zajączkowski. A regularity criterion for axially symmetric solutions to the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 54-68. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a2/
[1] D. Chae, J. Lee, “On the regularity of axisymmetric solutions to the Navier–Stokes equations”, Math. Z., 239 (2002), 645–671 | DOI | MR | Zbl
[2] G. P. Galdi, “An introduction to the Navier–Stokes initial-boundary value problem”, Fundamental directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., eds. G. P. Galdi, J. G. Heywood, R. Ranacher, Birkhäuser Verlag, Basel, 2000, 1–70 | MR | Zbl
[3] Y. Giga, “Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier–Stokes equations”, J. Diff. Eqs., 61 (1986), 186–212 | DOI | MR | Zbl
[4] E. Hopf, “Über die Anfangwertaufgabe für die Hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | DOI | MR | Zbl
[5] H. Kozono, “Uniqueness and regularity of weak solutions to the Navier–Stokes equations”, Lect. Notes Num. Appl. Anal., 16, 1998, 161–208 | MR | Zbl
[6] O. Kreml, M. Pokorný, “A regularity criterion for the angular velocity component in axisymmetric Navier–Stokes equations”, Electronic J. Diff. Eqs., 2007 (2007), 08, 10 pp. | MR | Zbl
[7] H. Kozono, H. Sohr, “Remark on uniqueness of weak solutions to the Navier–Stokes equations”, Analysis, 16 (1996), 255–271 | DOI | MR | Zbl
[8] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Nauka, Moscow, 1970 (in Russian) | MR
[9] O. A. Ladyzhenskaya, “On uniqueness and regularity of weak solutions to the Navier–Stokes equations”, Zap. Nauchn. Semin. LOMI, 5, 1967, 169–185 | MR | Zbl
[10] O. A. Ladyzhenskaya, “On unique solvability of three-dimensional Cauchy problem for the Navier–Stokes equations under the axial symmetry”, Zap. Nauchn. Semin. LOMI, 7, 1968, 155–177 | MR | Zbl
[11] O. A. Ladyzhenskaya, “Solutions “in the large” of the nonstationary boundary-value problem for the Navier–Stokes system with two space variables”, Comm. Pure Appl. Math., 12 (1959), 427–433 | DOI | MR | Zbl
[12] J. Leray, “Sur le mouvements d'un liquide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl
[13] J. Leray, “Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique”, J. Math. Pures Appl., 9:12 (1933), 1–82 | Zbl
[14] S. Leonardi, J. Málek, J. Nečas, M. Pokorný, “On axially symmetric flows in $\mathbb R^3$”, ZAA, 18 (1999), 639–649 | MR | Zbl
[15] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, Moscow, 1967 (in Russian)
[16] J. Neustupa, M. Pokorný, “Axisymmetric flow of Navier–Stokes fluid in the whole space with nonzero angular velocity component”, Math. Boh., 126:2 (2001), 469–481 | MR | Zbl
[17] J. Neustupa, M. Pokorný, An interior regularity criterion for an axially symmetric suitable weak solution to the Navier–Stokes equations, Preprint, Charles Univ., Prague, 2000 | MR
[18] G. Prodi, “Un teorema di unicitá per el equazioni di Navier–Stokes”, Ann. Mat. Pura Appl., 48 (1959), 173–182 | DOI | MR | Zbl
[19] M. Pokorný, “A regularity criterion for the angular velocity component in the case of axisymmetric Navier–Stokes equations”, Proceedings of the 4th European Congress on Elliptic and Parabolic Problems (Rolduc and Gaeta 2001), World Scientific, 2002, 233–242 | DOI | MR | Zbl
[20] L. Escauriaza, G. Seregin, V. Šverák, “$L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness”, Russ. Math. Surv., 58:2 (2003), 211–250 | DOI | MR | Zbl
[21] G. Seregin, “On smoothness of $L_{3,\infty}$-solutions to the Navier–Stokes equations up to boundary”, Math. Ann., 332 (2005), 219–238 | DOI | MR | Zbl
[22] H. Sohr, W. Wahl, “On the singular set and the uniqueness of weak solutions to the Navier–Stokes equations”, Manuscripta Math., 49 (1984), 27–59 | DOI | MR | Zbl
[23] M. R. Ukhovskii, V. I. Yudovich, “Axially symmetric motions of ideal and viscous fluid filling all space”, Prikl. Mat. Mekh., 32 (1968), 59–69 | MR
[24] W. M. Zaja̧czkowski, “Global special regular solutions to the Navier–Stokes equations in a cylindrical domain without the axis of symmetry”, Top. Meth. Nonlin. Anal., 24 (2004), 69–105 | MR | Zbl
[25] W. M. Zaja̧czkowski, “Global axially symmetric solutions with large swirl to the Navier–Stokes equations”, Top. Meth. Nonlin. Anal., 29 (2007), 295–331 | MR | Zbl
[26] W. M. Zaja̧czkowski, “Global special regular solutions to the Navier–Stokes equations in a cylindrical domain under boundary slip conditions”, Gakuto Series Math., 21 (2004), 1–188
[27] W. M. Zaja̧czkowski, “Global special regular solutions to the Navier–Stokes equations in axially symmetric domains under boundary slip conditions”, Diss. Math., 432 (2005), 1–138 | MR | Zbl
[28] W. M. Zaja̧czkowski, “Special regular solutions to the Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 362, 2008, 120–152 ; J. Math. Sci., 159:4 (2009), 452–471 | MR | Zbl | DOI