Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 224-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

If $\Omega\subset\mathbb R^n$ is a bounded Lipschitz domain, we prove the inequality $\|u\|_1\le c(n)\operatorname{diam}(\Omega)\int_\Omega|\varepsilon^D(u)|$ being valid for functions of bounded deformation vanishing on $\partial\Omega$. Here $\varepsilon^D(u)$ denotes the deviatoric part of the symmetric gradient and $\int_\Omega|\varepsilon^D(u)|$ stands for the total variation of the tensor-valued measure $\varepsilon^D(u)$. Further results concern possible extensions of this Poincaré-type inequality. Bibl. 27 titles.
@article{ZNSL_2010_385_a10,
     author = {M. Fuchs and S. Repin},
     title = {Some {Poincar\'e-type} inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {224--233},
     year = {2010},
     volume = {385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/}
}
TY  - JOUR
AU  - M. Fuchs
AU  - S. Repin
TI  - Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 224
EP  - 233
VL  - 385
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/
LA  - en
ID  - ZNSL_2010_385_a10
ER  - 
%0 Journal Article
%A M. Fuchs
%A S. Repin
%T Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 224-233
%V 385
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/
%G en
%F ZNSL_2010_385_a10
M. Fuchs; S. Repin. Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 224-233. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/

[1] R. A. Adams, Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl

[2] G. Anzellotti, M. Giaquinta, “Existence of the displacement field for an elasto-plastic body subject to Hencky's law and von Mises yield condition”, Manus. Math., 32 (1980), 101–136 | DOI | MR | Zbl

[3] S. Dain, “Generalized Korn's inequality and conformal Killing vectors”, Calc. Var., 25:4 (2006), 535–540 | DOI | MR | Zbl

[4] K. de Leeuw, H. Mirkil, “A priori estimates for differential operators in $L_\infty$ norm”, Illinois J. Math., 8 (1964), 112–124 | MR | Zbl

[5] M. Fuchs, “An estimate for the distance of a complex valued Sobolev function defined on the unit disc to the class of holomorphic functions”, J. Appl. Analysis (to appear)

[6] M. Fuchs, G. A. Seregin, “Variational methods for problems from plasticity theory and for generalized Newtonian fluids”, Lect. Notes in Mathematics, 1749, Springer Verlag, Berlin, 2000 | DOI | MR | Zbl

[7] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin–Heidelberg–New York, 1998

[8] H. Matthies, G. Strang, E. Christiansen, “The saddle point of a differential program”, Energy methods in finite element analysis, Volume dedicated to Professor Fraeijs de Veubeke, eds. Glowinski R., Rodin E., Zienkiewicz O. C., John Wiley, New York, 1979 | MR

[9] B. S. Mitjagin, “On the mixed second derivative”, Dokl. Akad. Nauk SSR, 123 (1958), 606–609 | MR

[10] D. Ornstein, “A noninequality for differential operators in the $L_1$ norm”, Arch. Rational Mech. Anal., 11 (1962), 40–49 | DOI | MR | Zbl

[11] Y. G. Reshetnyak, “Estimates for certain differential operators with finite dimensional kernel”, Sibirsk. Mat. Zh., 11 (1970), 414–428 | MR | Zbl

[12] G. A. Seregin, “Variational-difference scheme for problems in the mechanics of ideally elastoplastic media”, Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985), 237–253 | MR | Zbl

[13] G. A. Seregin, “Differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory”, Mat. Sb. (N.S.), 130(172):3(7) (1986), 291–309 | MR | Zbl

[14] G. A. Seregin, “Differentiability of local extremals of variational problems in the mechanics of perfect elastoplastic media”, Diff. Uravn., 23:11 (1987), 1981–1991 | MR | Zbl

[15] G. A. Seregin, “On differential properties of extremals of variational problems arising in plasticity theory”, Diff. Uravn., 26 (1990), 1033–1043 | MR

[16] G. A. Seregin, “On regularity of weak solutions of variational problems in plasticity theory”, Dokl. Acad. Sci., 314 (1990), 1344–1349 | MR | Zbl

[17] G. A. Seregin, “On the regularity of weak solutions of variational problems in plasticity theory”, Algebra Analiz, 2:2 (1990), 121–140 | MR | Zbl

[18] G. A. Seregin, “On regularity of minimizers of certain variational problems in plasticity theory”, Algebra Analiz, 4:5 (1992), 181–218 | MR | Zbl

[19] G. A. Seregin, “On differentiability properties of the stress tensor in Coulomb–Mohr plasticity”, Algebra Analiz, 4:6 (1992), 234–252 | MR | Zbl

[20] G. A. Seregin, “Differentiability properties of weak solutions of certain variational problems in the theory of perfect elasticplastic plates”, Appl. Math. Optim., 28 (1993), 307–335 | DOI | MR | Zbl

[21] G. A. Seregin, “Twodimensional variational problems in plasticity theory”, Izv. Russ. Academy of Sciences, 60 (1996), 175–210 | MR | Zbl

[22] G. A. Seregin, “On the differentiability of local extremals of variational problems in the mechanics of rigidly viscoplastic media”, Izv. Vyssh. Uchebn. Zaved Mat., 1987, no. 10(305), 23–30 | MR | Zbl

[23] G. A. Seregin, “On differential properties of extremals of variational problems of the mechanics of viscoplastic media”, Proc. Steklov Inst. Math., 3(188), 1991, 147–157 | MR | Zbl

[24] E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970 | MR

[25] M. J. Strauss, Variations of Korn's and Sobolev inequalities, Berkeley Symposium on Partial Differential Equations, Amer. Math. Soc. Symposia, 23, 1971

[26] P. Suquet, “Existence et régularité des solutions des equations de la plasticité parfaite”, Thèse de 3e Cycle, Université de Paris VI, 1978

[27] R. Temam, G. Strang, “Functions of bounded deformation”, Arch. Rat. Mech. Anal., 75 (1981), 7–21 | MR