Some Poincar\'e-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 224-233
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			If $\Omega\subset\mathbb R^n$ is a bounded Lipschitz domain, we prove the inequality $\|u\|_1\le c(n)\operatorname{diam}(\Omega)\int_\Omega|\varepsilon^D(u)|$ being valid for functions of bounded deformation vanishing on $\partial\Omega$. Here $\varepsilon^D(u)$ denotes the deviatoric part of the symmetric gradient and $\int_\Omega|\varepsilon^D(u)|$ stands for the total variation of the tensor-valued measure $\varepsilon^D(u)$. Further results concern possible extensions of this Poincaré-type inequality. Bibl. 27 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_385_a10,
     author = {M. Fuchs and S. Repin},
     title = {Some {Poincar\'e-type} inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {224--233},
     publisher = {mathdoc},
     volume = {385},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/}
}
                      
                      
                    TY - JOUR AU - M. Fuchs AU - S. Repin TI - Some Poincar\'e-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 224 EP - 233 VL - 385 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/ LA - en ID - ZNSL_2010_385_a10 ER -
%0 Journal Article %A M. Fuchs %A S. Repin %T Some Poincar\'e-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient %J Zapiski Nauchnykh Seminarov POMI %D 2010 %P 224-233 %V 385 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/ %G en %F ZNSL_2010_385_a10
M. Fuchs; S. Repin. Some Poincar\'e-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 224-233. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a10/
