@article{ZNSL_2010_385_a1,
author = {V. Vyalov and T. Shilkin},
title = {On the boundary regularity of weak solutions to the {MHD} system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--53},
year = {2010},
volume = {385},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a1/}
}
V. Vyalov; T. Shilkin. On the boundary regularity of weak solutions to the MHD system. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 18-53. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a1/
[1] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Mat. Nauk, 58:2 (2003), 3–44 | DOI | MR | Zbl
[3] Cheng He, Zhouping Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations”, J. Diff. Eqs., 213:2 (2005), 235–254 | DOI | MR | Zbl
[4] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimesional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl
[5] O. A. Ladyzhenskaya, V. A. Solonnikov, “Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid”, Proceedings of V. A. Steklov Mathematical Institute, 59, 1960, 115–173 | MR
[6] F.-H. Lin, “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl
[8] G. A. Seregin, “Differentiability properties of weak solutions of the Navier–Stokes equations”, St.-Petersburg Math. J., 14:1 (2003), 147–178 | MR | Zbl
[9] G. A. Seregin, “Some estimates near the boundary for solutions to the nonstationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl
[10] G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary patial regularity for the Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 310, 2004, 158–190 | MR | Zbl
[11] G. A. Seregin, “Local Regularity Theory for the Navier–Stokes Equations”, Handbook of Mathematical Fluid Dynamics, v. IV, eds. S. Friedlander, D. Serre, Elsevier, 2007
[12] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl
[13] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Uspekhi Mat. Nauk, 58:2 (2003), 123–156 | DOI | MR | Zbl
[14] V. A. Vyalov, “Partial regularity of solutions of magnetohydrodynamic equations”, Probl. Mat. Analiza, 36 (2007), 3–13 | MR
[15] V. A. Vyalov, “On the local smoothness of weak solutions to the MHD system”, Zap. Nauchn. Semin. POMI, 370, 2009, 5–21 | MR
[16] G. Tian, Z. Xin, “Gradient estimation of the Navier–Stokes equation”, Commun. Anal. Geom., 7:2 (1999), 221–257 | MR | Zbl