On the boundary regularity of weak solutions to the MHD system
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 18-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove the partial regularity of the boundary suitable weak solutions to the MHD system near the plane part of the boundary. Bibl. 16 titles.
@article{ZNSL_2010_385_a1,
     author = {V. Vyalov and T. Shilkin},
     title = {On the boundary regularity of weak solutions to the {MHD} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--53},
     year = {2010},
     volume = {385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a1/}
}
TY  - JOUR
AU  - V. Vyalov
AU  - T. Shilkin
TI  - On the boundary regularity of weak solutions to the MHD system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 18
EP  - 53
VL  - 385
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a1/
LA  - en
ID  - ZNSL_2010_385_a1
ER  - 
%0 Journal Article
%A V. Vyalov
%A T. Shilkin
%T On the boundary regularity of weak solutions to the MHD system
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 18-53
%V 385
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a1/
%G en
%F ZNSL_2010_385_a1
V. Vyalov; T. Shilkin. On the boundary regularity of weak solutions to the MHD system. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 18-53. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a1/

[1] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Mat. Nauk, 58:2 (2003), 3–44 | DOI | MR | Zbl

[3] Cheng He, Zhouping Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations”, J. Diff. Eqs., 213:2 (2005), 235–254 | DOI | MR | Zbl

[4] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimesional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, “Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid”, Proceedings of V. A. Steklov Mathematical Institute, 59, 1960, 115–173 | MR

[6] F.-H. Lin, “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[8] G. A. Seregin, “Differentiability properties of weak solutions of the Navier–Stokes equations”, St.-Petersburg Math. J., 14:1 (2003), 147–178 | MR | Zbl

[9] G. A. Seregin, “Some estimates near the boundary for solutions to the nonstationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl

[10] G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary patial regularity for the Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 310, 2004, 158–190 | MR | Zbl

[11] G. A. Seregin, “Local Regularity Theory for the Navier–Stokes Equations”, Handbook of Mathematical Fluid Dynamics, v. IV, eds. S. Friedlander, D. Serre, Elsevier, 2007

[12] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl

[13] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Uspekhi Mat. Nauk, 58:2 (2003), 123–156 | DOI | MR | Zbl

[14] V. A. Vyalov, “Partial regularity of solutions of magnetohydrodynamic equations”, Probl. Mat. Analiza, 36 (2007), 3–13 | MR

[15] V. A. Vyalov, “On the local smoothness of weak solutions to the MHD system”, Zap. Nauchn. Semin. POMI, 370, 2009, 5–21 | MR

[16] G. Tian, Z. Xin, “Gradient estimation of the Navier–Stokes equation”, Commun. Anal. Geom., 7:2 (1999), 221–257 | MR | Zbl