@article{ZNSL_2010_385_a0,
author = {M. Bildhauer and M. Fuchs},
title = {A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
year = {2010},
volume = {385},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/}
}
TY - JOUR AU - M. Bildhauer AU - M. Fuchs TI - A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 5 EP - 17 VL - 385 UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/ LA - en ID - ZNSL_2010_385_a0 ER -
%0 Journal Article %A M. Bildhauer %A M. Fuchs %T A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation %J Zapiski Nauchnykh Seminarov POMI %D 2010 %P 5-17 %V 385 %U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/ %G en %F ZNSL_2010_385_a0
M. Bildhauer; M. Fuchs. A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/
[1] R. A. Adams, Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl
[2] L. Ambrosio, G. Dal Maso, “A general chain rule for distributional derivatives”, Proc. Amer. Math. Soc., 108 (1990), 691–702 | DOI | MR | Zbl
[3] L. Ambrosio, G. Dal Maso, “On the relaxation in $BV(\Omega;\mathbb R^m)$ of quasi-convex integrals”, J. Funct. Anal., 109 (1992), 76–97 | DOI | MR | Zbl
[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Clarendon Press, Oxford, 2000 | MR | Zbl
[5] M. Bildhauer, Convex variational problems: linear, nearly linear, and anisotropic growth conditions, Lect. Notes Math., 1818, Springer, Berlin–Heidelberg–New York, 2003 | DOI | MR | Zbl
[6] M. Bildhauer, M. Fuchs, “Partial regularity for a class of anisotropic variational integrals with convex hull property”, Asymp. Anal., 32 (2002), 293–315 | MR | Zbl
[7] M. Bildhauer, M. Fuchs, “Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions”, Algebra Analiz, 14:1 (2002), 26–45 | MR | Zbl
[8] G. Buttazzo, Semicontinuity, relaxation, and integral representation in the calculus of variations, Pitman Res. Notes Math., Longman, Harlow, 1989 | MR | Zbl
[9] A. D'Ottavio, F. Leonetti, C. Musciano, “Maximum principle for vector valued mappings minimizing variational integrals”, Atti Sem. Mat. Fis. Uni. Modena, 46 (1998), 677–683 | MR | Zbl
[10] E. De Giorgi, Selected papers, eds. L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo, Springer, Berlin, 2006 | MR
[11] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, Boston–Basel–Stuttgart, 1984 | MR | Zbl
[12] M. Giaquinta, G. Modica, J. Souček, “Functionals with linear growth in the calculus of variations”, Comm. Math. Univ. Carolinae, 20 (1979), 143–171 | MR
[13] C. Goffman, J. Serrin, “Sublinear functions of measures and variational integrals”, Duke Math. J., 31 (1964), 159–178 | DOI | MR | Zbl
[14] L. Simon, Lectures on geometric measure theory, Proc. Centre Math. Anal., 3, Australian Nat. Univ., 1983 | MR | Zbl