A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss variational integrals with density having linear growth on spaces of vector valued $BV$-functions and prove $\operatorname{Im}(u)\subset K$ for minimizers $u$ provided that the boundary data take their values in the closed convex set $K$ assuming in addition that the integrand satisfies natural structure conditions. Bibl. 14 titles.
@article{ZNSL_2010_385_a0,
     author = {M. Bildhauer and M. Fuchs},
     title = {A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     year = {2010},
     volume = {385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 17
VL  - 385
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/
LA  - en
ID  - ZNSL_2010_385_a0
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-17
%V 385
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/
%G en
%F ZNSL_2010_385_a0
M. Bildhauer; M. Fuchs. A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/

[1] R. A. Adams, Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl

[2] L. Ambrosio, G. Dal Maso, “A general chain rule for distributional derivatives”, Proc. Amer. Math. Soc., 108 (1990), 691–702 | DOI | MR | Zbl

[3] L. Ambrosio, G. Dal Maso, “On the relaxation in $BV(\Omega;\mathbb R^m)$ of quasi-convex integrals”, J. Funct. Anal., 109 (1992), 76–97 | DOI | MR | Zbl

[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Clarendon Press, Oxford, 2000 | MR | Zbl

[5] M. Bildhauer, Convex variational problems: linear, nearly linear, and anisotropic growth conditions, Lect. Notes Math., 1818, Springer, Berlin–Heidelberg–New York, 2003 | DOI | MR | Zbl

[6] M. Bildhauer, M. Fuchs, “Partial regularity for a class of anisotropic variational integrals with convex hull property”, Asymp. Anal., 32 (2002), 293–315 | MR | Zbl

[7] M. Bildhauer, M. Fuchs, “Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions”, Algebra Analiz, 14:1 (2002), 26–45 | MR | Zbl

[8] G. Buttazzo, Semicontinuity, relaxation, and integral representation in the calculus of variations, Pitman Res. Notes Math., Longman, Harlow, 1989 | MR | Zbl

[9] A. D'Ottavio, F. Leonetti, C. Musciano, “Maximum principle for vector valued mappings minimizing variational integrals”, Atti Sem. Mat. Fis. Uni. Modena, 46 (1998), 677–683 | MR | Zbl

[10] E. De Giorgi, Selected papers, eds. L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo, Springer, Berlin, 2006 | MR

[11] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, Boston–Basel–Stuttgart, 1984 | MR | Zbl

[12] M. Giaquinta, G. Modica, J. Souček, “Functionals with linear growth in the calculus of variations”, Comm. Math. Univ. Carolinae, 20 (1979), 143–171 | MR

[13] C. Goffman, J. Serrin, “Sublinear functions of measures and variational integrals”, Duke Math. J., 31 (1964), 159–178 | DOI | MR | Zbl

[14] L. Simon, Lectures on geometric measure theory, Proc. Centre Math. Anal., 3, Australian Nat. Univ., 1983 | MR | Zbl