A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss variational integrals with density having linear growth on spaces of vector valued $BV$-functions and prove $\operatorname{Im}(u)\subset K$ for minimizers $u$ provided that the boundary data take their values in the closed convex set $K$ assuming in addition that the integrand satisfies natural structure conditions. Bibl. 14 titles.
@article{ZNSL_2010_385_a0,
     author = {M. Bildhauer and M. Fuchs},
     title = {A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {385},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 17
VL  - 385
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/
LA  - en
ID  - ZNSL_2010_385_a0
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-17
%V 385
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/
%G en
%F ZNSL_2010_385_a0
M. Bildhauer; M. Fuchs. A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a0/