On the strong law of large numbers for a sequence of nonnegative random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 182-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New sufficient conditions are found for the applicability of the strong law of large numbers to a sequence of dependent nonnegative random variables with finite variances. Bibl. 4 titles.
@article{ZNSL_2010_384_a8,
     author = {V. V. Petrov},
     title = {On the strong law of large numbers for a~sequence of nonnegative random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {182--184},
     year = {2010},
     volume = {384},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a8/}
}
TY  - JOUR
AU  - V. V. Petrov
TI  - On the strong law of large numbers for a sequence of nonnegative random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 182
EP  - 184
VL  - 384
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a8/
LA  - ru
ID  - ZNSL_2010_384_a8
ER  - 
%0 Journal Article
%A V. V. Petrov
%T On the strong law of large numbers for a sequence of nonnegative random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 182-184
%V 384
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a8/
%G ru
%F ZNSL_2010_384_a8
V. V. Petrov. On the strong law of large numbers for a sequence of nonnegative random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 182-184. http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a8/

[1] V. V. Petrov, “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382 | DOI | Zbl

[2] N. Etemadi, “On the law of large numbers for nonnegative random variables”, J. Multivariate Analysis, 13:1 (1983), 187–193 | DOI | MR | Zbl

[3] A. V. Bulinskii, A. P. Shashkin, Predelnye teoremy dlya assotsiirovannykh sluchainykh polei i rodstvennykh sistem, Fizmatlit, Moskva, 2008

[4] A. Dvoretzky, “On the strong stability of a sequence of events”, Ann. Math. Statist., 20:2 (1949), 296–299 | DOI | MR | Zbl