On random surface area
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 154-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a random smooth Gaussian field $G(x)\colon F\to\mathbb R$, where $F$ is a compact in $\mathbb R^d$. We derive a formula for average area of a surface set by the equation $G(x)=0$ and give some applications. As an auxiliary result we obtain an integral expression for area of a surface induced by zeros of any non-random smooth field. Bibl. 13 titles.
@article{ZNSL_2010_384_a6,
     author = {D. N. Zaporozhets and I. A. Ibragimov},
     title = {On random surface area},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--175},
     year = {2010},
     volume = {384},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a6/}
}
TY  - JOUR
AU  - D. N. Zaporozhets
AU  - I. A. Ibragimov
TI  - On random surface area
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 154
EP  - 175
VL  - 384
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a6/
LA  - ru
ID  - ZNSL_2010_384_a6
ER  - 
%0 Journal Article
%A D. N. Zaporozhets
%A I. A. Ibragimov
%T On random surface area
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 154-175
%V 384
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a6/
%G ru
%F ZNSL_2010_384_a6
D. N. Zaporozhets; I. A. Ibragimov. On random surface area. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 154-175. http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a6/

[1] A. V. Efimov, Matematicheskii analiz (spetsialnye razdely), v. 1, Vysshaya shkola, 1980 | MR | Zbl

[2] I. A. Ibpagimov, S. S. Podkorytov, “O sluchainykh veschestvennykh algebpaicheskikh povepkhnostyakh”, Dokl. Akad. Nauk, 343:6 (1995), 734–736 | MR

[3] M. Kats, Veroyatnost i smezhnye voprosy v fizike, Editorial URSS, 2003

[4] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, FAZIS, 1998

[5] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, 1989 | MR

[6] A. Edelman, E. Kostlan, “How many zeros of a random polynomial are real”, Bull. Amer. Math. Soc., 32:1 (1995), 1–37 | DOI | MR | Zbl

[7] H. Federer, “Curvature measures”, Trans. Amer. Math. Soc., 93 (1959), 418–491 | DOI | MR | Zbl

[8] M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49 (1943), 314–320 | DOI | MR | Zbl

[9] E. Kostlan, “On the distribution of roots of random polynomials”, From Topology to Computation, Proceedings of the Smalefest, Springer, 1993, 419–431 | DOI | MR | Zbl

[10] H. J. Landau, L. A. Shepp, “On the supremum of a Gaussian process”, Sankhya Ser. A, 32 (1970), 369–378 | MR | Zbl

[11] C. Qualls, “On the number of zeros of a stationary Gaussian random trigonometric polynomial”, J. London Math. Soc., 2:2 (1970), 216–220 | DOI | MR | Zbl

[12] S. O. Rice, “Mathematical analysis of random noise”, Bell System Technical Journal, 24 (1945), 46–156 | DOI | MR | Zbl

[13] M. Shub, S. Smale, “Complexity of Bézout's theorem II: volumes and probabilities”, Computational Algebraic Geometry, 109 (1993), 267–285 | DOI | MR | Zbl