Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 105-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X,X_1,X_2,\dots$ be i.i.d. $\mathbb R^d$-valued real random vectors. Assume that $\mathbf EX=0$ and that $X$ has a non-degenerate distribution. Let $G$ be a mean zero Gaussian random vector with the same covariance operator as that of $X$. We investigate the distributions of non-degenerate quadratic forms $\mathbb Q[S_N]$ of the normalized sums $S_N=N^{-1/2}(X_1+\dots+X_N)$ and show that, without any additional conditions, for any $a\in\mathbb R^d$, $$ \Delta_N^{(a)}\stackrel{\mathrm{def}}=\sup_x\bigl|\mathbf P\bigl\{\mathbb Q[S_N-a]\le x\bigr\}-\mathbf P\bigl\{\mathbb Q[G-a]\le x\bigr\}-E_a(x)\bigr|=\mathcal O\bigl(N^{-1}\bigr), $$ provided that $d\ge5$ and $\mathbf E\left\|X\right\|^4<\infty$. Here $E_a(x)$ is the Edgeworth type correction of order $\mathcal O\bigl(N^{-1/2}\bigr)$. Furthermore, we provide explicit bounds of order $\mathcal O\bigl(N^{-1}\bigr)$ for $\Delta_N^{(a)}$ and for the concentration function of the random variable $\mathbb Q[S_N+a]$, $a\in\mathbb R^d$. Our results extend the corresponding results of Bentkus and Götze (1997) ($d\ge9$) to the case $d\ge5$. Bibl. 35 titles.
@article{ZNSL_2010_384_a5,
     author = {F. G\"otze and A. Yu. Zaitsev},
     title = {Uniform rates of approximation by short asymptotic expansions in the {CLT} for quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--153},
     year = {2010},
     volume = {384},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a5/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. Yu. Zaitsev
TI  - Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 105
EP  - 153
VL  - 384
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a5/
LA  - ru
ID  - ZNSL_2010_384_a5
ER  - 
%0 Journal Article
%A F. Götze
%A A. Yu. Zaitsev
%T Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 105-153
%V 384
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a5/
%G ru
%F ZNSL_2010_384_a5
F. Götze; A. Yu. Zaitsev. Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 105-153. http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a5/

[1] V. Bentkus, “Asymptotic expansions for distributions of sums of independent random elements in a Hilbert space”, Lithuanian Math. J., 24 (1984), 305–319 | DOI | MR | Zbl

[2] V. Bentkus, F. Gettse, “O chisle tselykh tochek v bolshom ellipsoide”, Doklady RAN, 343:4 (1995), 439–440 | MR | Zbl

[3] V. Bentkus, F. Götze, Optimal rates of convergence in functional limit theorems for quadratic forms, Preprint 95-091 SFB 343, Universität Bielefeld, 1995

[4] V. Bentkus, F. Götze, “Optimal rates of convergence in the CLT for quadratic forms”, Ann. Probab., 24:1 (1996), 466–490 | DOI | MR | Zbl

[5] V. Bentkus, F. Götze, “Uniform rates of convergence in the CLT for quadratic forms in multidimensional spaces”, Probab. Theory Rel. Fields, 109:3 (1997), 367–416 | DOI | MR | Zbl

[6] V. Bentkus, F. Götze, “On the lattice point problem for ellipsoids”, Acta Arithmetica, 80:2 (1997), 101–125 | MR | Zbl

[7] V. Bentkus, F. Gëttse, V. Paulauskas, A. Rachkauskas, “Tochnost gaussovskoi approksimatsii v banakhovykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 81, 1991, 39–139 | MR | Zbl

[8] V. Bentkus, F. Götze, A. Yu. Zaitsev, “Approximations of quadratic forms of independent random vectors by accompanying laws”, Teoriya veroyatn. i ee primen., 42:2 (1997), 308–335 | DOI | MR | Zbl

[9] V. Bentkus, F. Götze, R. Zitikis, “Asymptotic expansions in the integral and local limit theorems in Banach spaces with applications to $\omega$-statistics”, J. Theor. Probab., 6:4 (1993), 727–780 | DOI | MR | Zbl

[10] R. N. Bhattacharya, R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiley, New York, 1986

[11] S. A. Bogatyrev, F. Götze, V. V. Ulyanov, “Non-uniform bounds for short asymptotic expansions in the CLT for balls in a Hilbert space”, J. Multivariate Anal., 97:9 (2006), 2041–2056 | DOI | MR | Zbl

[12] J. W. S. Cassels, An introduction to the geometry of numbers, Springer, Berlin–Göttingen–Heidelberg, 1959 | MR | Zbl

[13] H. Davenport, “Indefinite quadratic forms in many variables. II”, Proc. London Math. Soc., 8:3 (1958), 109–126 | DOI | MR | Zbl

[14] C.-G. Esseen, “Fourier analysis of distribution functions”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[15] F. Fricker, Einführung in die Gitterpunktlehre, Birkhäuser, Basel–Boston–Stuttgart, 1982 | MR | Zbl

[16] F. Götze, “Asymptotic expansions for bivariate von Mises functionals”, Z. Wahrsch. verw. Geb., 50 (1979), 333–355 | DOI | MR | Zbl

[17] F. Götze, “Lattice point problem and values of quadratic forms”, Invent. Math., 157:1 (2004), 195–226 | DOI | MR | Zbl

[18] F. Götze, G. A. Margulis, Distribution of values of quadratic forms at integral points, Preprint, 2010, arXiv: 1004.5123

[19] F. Götze, V. Ulyanov, Uniform approximations in the CLT for balls in Euclidian spaces, Preprint 00-034 SFB 343, Universität Bielefeld, Bielefeld, 2000

[20] F. Götze, V. Ulyanov, Asymptotic disrtribution of $\chi^2$-type statistics, Preprint 03-033, Research group “Spectral analysis, asymptotic distributions and stochastic dynamics”, 2003

[21] F. Götze, A. Yu. Zaitsev, Uniform rates of convergence in the CLT for quadratic forms, Preprint 08119 SFB 701, Universität Bielefeld, Bielefeld, 2008

[22] F. Götze, A. Yu. Zaitsev, Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms of sums of i.i.d. random vectors, Preprint 09073 SFB 701, Universität Bielefeld, Bielefeld, 2009

[23] F. Götze, A. Yu. Zaitsev, Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms of sums of i.i.d. random vectors, Preprint 10086 SFB 701, Universität Bielefeld, Bielefeld, 2010 | Zbl

[24] G. H. Hardy, “The average order of the arithmetical functions $P(x)$ and $\Delta (x)$”, Proc. London Math. Soc., 15:2 (1916), 192–213 | Zbl

[25] A. K. Lenstra, H. W. Lenstra (Jr.), L. Lovász, “Factoring polynomials with rational coefficients”, Math. Ann., 261:4 (1982), 515–534 | DOI | MR | Zbl

[26] D. Mumford, Tata Lectures on Theta, v. I, Birkhäuser, Boston–Basel–Stuttgart, 1983 | MR | Zbl

[27] S. V. Nagaev, “On a new approach to the study of the distribution of the norm of random element in Hilbert space”, Abstracts of the Fifth Intern. Vilnius Conf. in Probab. Theory and Math. Statistics, v. 4, Mokslas, VSP, Vilnius, 1989, 77–78

[28] S. V. Nagaev, V. I. Chebotarev, “On the accuracy of Gaussian approximation in Hilbert space”, Limit theorems of probability theory (Vilnius, 1999), Acta Appl. Math., 58, 1999, 1–3, 189–215 | DOI | MR | Zbl

[29] S. V. Nagaev, V. I. Chebotarev, “On the accuracy of Gaussian approximation in Hilbert space”, Siberian Adv. Math., 15:1 (2005), 11–73 | MR

[30] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[31] H. Prawitz, “Limits for a distribution, if the characteristic function is given in a finite domain”, Skand. AktuarTidskr., 1972, 138–154 | MR

[32] V. V. Senatov, “Kachestvennye effekty v otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme v mnogomernykh prostranstvakh”, Trudy MIAN, 215, 1997, 3–239 | MR | Zbl

[33] V. V. Senatov, Normal approximation: new results, methods and problems, Modern Probability and Statistics, VSP, Utrecht, 1998 | MR | Zbl

[34] H. Weyl, “Über die Gleichverteilung der Zahlen mod-Eins”, Math. Ann., 77 (1915/16), 313–352 | DOI | MR

[35] B. A. Zalesskii, V. V. Sazonov, V. V. Ulyanov, “Normalnaya approksimatsiya v gilbertovom prostranstve. I”, Teoriya veroyatn. i ee primen., 33:2 (1988), 225–245 | MR | Zbl