Probabilistic approach to a free boundary problem and American option procing
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 40-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we discuss a probabilistic approach to the construction of a solution of a free boundary problem for parabolic and integro-differential equations which is associated with an optimization problem for a stochastic equation with diffusion and jumps. The results are applied to calculation of American option prices in Black–Scholes and Merton models. Bibl. 22 titles.
@article{ZNSL_2010_384_a3,
     author = {Ya. I. Belopolskaya and M. M. Romadanova},
     title = {Probabilistic approach to a~free boundary problem and {American} option procing},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--77},
     year = {2010},
     volume = {384},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a3/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
AU  - M. M. Romadanova
TI  - Probabilistic approach to a free boundary problem and American option procing
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 40
EP  - 77
VL  - 384
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a3/
LA  - ru
ID  - ZNSL_2010_384_a3
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%A M. M. Romadanova
%T Probabilistic approach to a free boundary problem and American option procing
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 40-77
%V 384
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a3/
%G ru
%F ZNSL_2010_384_a3
Ya. I. Belopolskaya; M. M. Romadanova. Probabilistic approach to a free boundary problem and American option procing. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 40-77. http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a3/

[1] H. P. McKean (Jr.), “Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics”, Indust. Manage. Rev., 6 (1965), 32–39 | MR

[2] P. van Moerbeke, “On optimal stopping and free boundary problem”, Arch. Rat. Mech. Anal., 60 (1976), 101–148 | DOI | MR | Zbl

[3] A. Bensoussan, “On the theory of option pricing”, Acta Appl. Math., 2 (1984), 139–158 | MR | Zbl

[4] I. Karatzas, “On the pricing of the american option”, Appl. Math. Optim., 17 (1988), 37–60 | DOI | MR | Zbl

[5] S. Boyarchenko, S. Levendorskii, Irreversible Decisions under Uncertainty, Studies Economic Theory, 27, 2007 | MR | Zbl

[6] R. Cont, P. Tankov, Financial Modelling With Jump Processes, Chapman Hall CRC Press, 2003 | MR

[7] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, J. Political Economy, 81 (1973), 637–654 | DOI | Zbl

[8] T. Bork, Teoriya arbitrazha v nepreryvnom vremeni, MTsNMO, M., 2010

[9] Yue-Kuen Kwok, Mathematical Models of Financial Derivatives, 2nd ed., Springer Finance, 2008 | MR | Zbl

[10] W. H. Fleming, H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 2006 | MR

[11] A. Friedman, Variational Principles and Free Boundary Problems, Wiley, N.Y., 1982 | MR | Zbl

[12] P. Carr, “Randomization and the American put”, Review Financial Stud., 11 (1998), 597–626 | DOI

[13] P. Carr, D. Faguet, Valuing finite-lived options as perpetual, Working paper, Cornell University, 1996

[14] R. C. Merton, “Option pricing when underlying stock returns are discontinuous”, J. Financial Econ., 3 (1976), 125–144 | DOI | Zbl

[15] S. Boyarchenko, S. Levendorskii, “American Options: the EPV pricing model”, Ann. Finance, 1 (2005), 267–292 | DOI | Zbl

[16] S. Boyarchenko, S. Levendorskii, “American options in Regime-Switching models”, SIAM J. Control Optimiz., 48:3 (2009), 1353–1376 | DOI | MR | Zbl

[17] S. I. Boyarchenko, S. Z. Levendorski, “Perpetual american options under Lévy processes”, SIAM J. Control Optimiz., 40:6 (2002), 1663–1696 | DOI | MR | Zbl

[18] S. Levendorski, “Pricing of the American put under Lévy processes”, Intern. J. Theoret. Appl. Finance, 7:3 (2004), 303–336 | DOI | MR

[19] B. Oksendal, Stokhasticheskie differentsialnye uravneniya, Mir, 2003

[20] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[21] A. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, S.Pb., 2000

[22] S. Boyarchenko, S. Levendorski, Non-Gaussian Merton–Black–Scholes Theory, World Scientific, Singapore, 2002 | MR | Zbl