Asymptotic analysis of a new dynamic semiparametric regression model with cross-effects of survivals
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 29-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new flexible and simple semiparametric model including the cases when hazard rates cross, go away, are proportional, approach or converge is proposed. Semiparametric estimation procedures for censored data are given. A test for absence of hazard rates crossing is proposed. Bibl. 11 titles.
@article{ZNSL_2010_384_a2,
     author = {V. Bagdonavi\v{c}ius and R. Levulien\'e and M. Nikulin},
     title = {Asymptotic analysis of a~new dynamic semiparametric regression model with cross-effects of survivals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--39},
     year = {2010},
     volume = {384},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a2/}
}
TY  - JOUR
AU  - V. Bagdonavičius
AU  - R. Levuliené
AU  - M. Nikulin
TI  - Asymptotic analysis of a new dynamic semiparametric regression model with cross-effects of survivals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 29
EP  - 39
VL  - 384
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a2/
LA  - en
ID  - ZNSL_2010_384_a2
ER  - 
%0 Journal Article
%A V. Bagdonavičius
%A R. Levuliené
%A M. Nikulin
%T Asymptotic analysis of a new dynamic semiparametric regression model with cross-effects of survivals
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 29-39
%V 384
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a2/
%G en
%F ZNSL_2010_384_a2
V. Bagdonavičius; R. Levuliené; M. Nikulin. Asymptotic analysis of a new dynamic semiparametric regression model with cross-effects of survivals. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 29-39. http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a2/

[1] P. K. Andersen, O. Borgan, R. Gill, N. Keiding, Statistical models based on counting processes, Springer, New York, 1991 | MR

[2] V. Bagdonavičius, J. Kruopis, M. Nikulin, Non-parametric tests for censored data, ISTE – J. Wiley, London, 2010

[3] V. Bagdonavičius, M. A. Hafdi, M. Nikulin, “Analysis of survival data with cross-effects of survival functions”, Biostatistics, 5 (2004), 415–425 | DOI | Zbl

[4] V. Bagdonavičius, M. Nikulin, Accelerated life models, Chapman and Hall CRC, Boca Raton, 2002

[5] V. Bagdonavičius, M. Nikulin, “Generalized proportional hazards model based on modified partial likelihood”, Lifetime Data Analysis, 5 (1999), 329–350 | DOI | MR | Zbl

[6] R. Henderson, “Discussion on the paper by Zeng and Lin”, J. R. Statist. Soc. B, 69 (2007), 536–537

[7] F. Hsieh, “On heteroscedastic hazards regression models: theory and application”, J. Royal Statist. Soc. B, 63 (2001), 63–79 | DOI | MR | Zbl

[8] J. P. Klein, M. L. Moeschberger, Survival Analysis, Springer, New York, 1997

[9] S. A. Murphy, A. W. van der Vaart, “On profile likelihood”, JASA, 95 (2000), 449–465 | DOI | MR

[10] D. M. Stablein, I. A. Koutrouvelis, “A two sample test sensitive to crossing hazards in uncensored and singly censored data”, Biometrics, 41 (1985), 643–652 | DOI | MR | Zbl

[11] D. Zeng, D. Y. Lin, “Maximum likelihood estimation in semiparametric regression models with censored data”, J. R. Statist. Soc. B, 69 (2007), 509–564 | DOI | MR