The method of extremal metric in the problem on the maximum of a conformal invariant
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 126-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Applications of an extremal metric approach to the problems on extremal decomposition are presented. Problems on the maxima of a certain weighted sum of the reduced modules of simply connected domains and of a related conformal invariant are solved. Bibl. 13 titles.
@article{ZNSL_2010_383_a8,
     author = {G. V. Kuz'mina},
     title = {The method of extremal metric in the problem on the maximum of a~conformal invariant},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--143},
     year = {2010},
     volume = {383},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a8/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - The method of extremal metric in the problem on the maximum of a conformal invariant
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 126
EP  - 143
VL  - 383
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a8/
LA  - ru
ID  - ZNSL_2010_383_a8
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T The method of extremal metric in the problem on the maximum of a conformal invariant
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 126-143
%V 383
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a8/
%G ru
%F ZNSL_2010_383_a8
G. V. Kuz'mina. The method of extremal metric in the problem on the maximum of a conformal invariant. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 126-143. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a8/

[1] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. I”, Algebra i analiz, 9:3 (1997), 41–103 | MR | Zbl

[2] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl

[3] G. V. Kuzmina, “K zadache o maksimume proizvedeniya konformnykh radiusov nenalegayuschikh oblastei”, Zap. nauchn. semin. LOMI, 100, 1980, 131–145 | MR | Zbl

[4] I. Fedorov, “O maksimume odnogo konformnogo invarianta v zadache o nenalegayuschikh oblastyakh”, Zap. nauchn. semin. LOMI, 112, 1981, 172–183 | MR | Zbl

[5] V. N. Dubinin, “Razdelyayuschee preobrazovanie oblastei i zadachi ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 168, 1988, 48–66 | Zbl

[6] V. N. Dubinin, D. A. Kirillova, “K zadacham ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 357, 2008, 54–74 | Zbl

[7] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Vladivostok, 2009

[8] E. G. Emelyanov, “K zadacham ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 154, 1986, 76–89 | MR | Zbl

[9] E. G. Emelyanov, “O svyazi dvukh zadach ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 160, 1987, 91–98 | MR

[10] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[11] E. G. Emelyanov, “K zadache o maksimume proizvedeniya stepenei konformnykh radiusov nenalegayuschikh oblastei”, Zap. nauchn. semin. POMI, 286, 2002, 103–114 | MR | Zbl

[12] E. G. Emelyanov, “Konformno-invariantnye funktsionaly na rimanovoi sfere”, Zap. nauchn. semin. POMI, 276, 2001, 134–154 | MR | Zbl

[13] G. V. Kuzmina, “K voprosu ob ekstremalnom razbienii rimanovoi sfery”, Zap. nauchn. semin. POMI, 185, 1990, 72–95 | MR