@article{ZNSL_2010_383_a6,
author = {S. I. Kalmykov},
title = {Covering theorems for polynomials with curved majorants on two segments},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--109},
year = {2010},
volume = {383},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a6/}
}
S. I. Kalmykov. Covering theorems for polynomials with curved majorants on two segments. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 97-109. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a6/
[1] M. A. Lachance, “Bernstein and Markov inequalities for constrained polynomials”, Lect. Notes Math., 1045, 1984, 125–135 | DOI | MR
[2] Q. I. Rahman, G. Schmeisser, “Markoff type inequalities for curved majorants”, Numerical methods of approx. theory, 8 (1987), 169–183 | MR | Zbl
[3] V. N. Dubinin, S. I. Kalmykov, “Printsip mazhoratsii dlya meromorfnykh funktsii”, Mat. sb., 198:12 (2007), 37–46 | DOI | MR | Zbl
[4] S. I. Kalmykov, “Printsipy mazhoratsii i nekotorye neravenstva dlya polinomov i ratsionalnykh funktsii s predpisannymi polyusami”, Zap. nauchn. semin. POMI, 357, 2008, 143–157 | Zbl
[5] S. I. Kalmykov, “O polinomakh, imeyuschikh krivolineinuyu mazhorantu na dvukh otrezkakh”, Izv. vuzov. Matematika, 2009, no. 10, 72–75 | MR | Zbl
[6] Ya. L. Geronimus, Teoriya ortogonalnykh mnogochlenov, M., 1950
[7] A. L. Levin, E. B. Saff, “Potential theoretic tools polynomial and rational approximation”, Harmonic Analysis and Rational Approximation, Lect. Notes in Control and Inf. Sci., 327, 2006, 71–94 | DOI | MR | Zbl
[8] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, M., 1989 | MR
[9] K. Dochev, “O nekotorykh ekstremalnykh svoistvakh mnogochlenov”, Dokl. AN SSSR, 153:3 (1963), 519–521 | Zbl
[10] P. Borwein, Polynomials and Polynomial Inequalities, Springer-Verlag, N.Y., 1995 | MR
[11] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl
[12] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, v. 2, M., 1962
[13] G. Sege, Ortogonalnye mnogochleny, M., 1962
[14] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd. Kubanskogo gos. un-ta, Krasnodar, 1980
[15] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, M., 1970 | Zbl