On the components of the lemniscate containing no critical points of a~polynomial other than its zeros
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 77-85
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $P$ be a complex polynomial of degree $n$ and let $E$ be a connected component of the set $\{z\colon|P(z)|\leq1\}$ containing no critical points of $P$ other than its zeros. We prove the inequality $|(z-a)P'(z)/P(z)|\leq n$ for all $z\in E\setminus\{a\}$, where $a$ is the zero of the polynomial $P$ lying in $E$. Equality is attained for $P(z)=cz^n$ and any $z$, $c\neq0$. Bibl. 4 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_383_a4,
     author = {V. N. Dubinin},
     title = {On the components of the lemniscate containing no critical points of a~polynomial other than its zeros},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {383},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a4/}
}
                      
                      
                    TY - JOUR AU - V. N. Dubinin TI - On the components of the lemniscate containing no critical points of a~polynomial other than its zeros JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 77 EP - 85 VL - 383 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a4/ LA - ru ID - ZNSL_2010_383_a4 ER -
V. N. Dubinin. On the components of the lemniscate containing no critical points of a~polynomial other than its zeros. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 77-85. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a4/