Geometric versions of Schwarz lemma and symmetrization
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 63-76
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Connection between the geometric versions of Schwarz lemma and the known symmetrization principles for some classes of analytic functions in a disk and a circular ring are discussed. In particular, simple proofs based on classical approaches are presented for some resent results of other authors. Bibl. 22 titles.
@article{ZNSL_2010_383_a3,
     author = {V. N. Dubinin},
     title = {Geometric versions of {Schwarz} lemma and symmetrization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--76},
     year = {2010},
     volume = {383},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Geometric versions of Schwarz lemma and symmetrization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 63
EP  - 76
VL  - 383
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/
LA  - ru
ID  - ZNSL_2010_383_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Geometric versions of Schwarz lemma and symmetrization
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 63-76
%V 383
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/
%G ru
%F ZNSL_2010_383_a3
V. N. Dubinin. Geometric versions of Schwarz lemma and symmetrization. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 63-76. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/

[1] V. N. Dubinin, “Emkosti kondensatorov, obobscheniya lemm Gretsha i simmetrizatsiya”, Zap. nauchn. semin. POMI, 337, 2006, 73–100 | MR | Zbl

[2] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, M., 1966 | Zbl

[3] H. P. Boas, Julius and Julia$:$ Mastering the art of the Schwarz lemma, 2010, arXiv: 1001.0559

[4] R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini, T. J. Ransford, “Area, capacity, and diameter versions of Schwarz's lemma”, Conform. Geom. Dyn., 12 (2008), 133–152 | DOI | MR | Zbl

[5] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, M., 1962 | MR

[6] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl

[7] T. Kubo, “Hyperbolic transfinite diameter and some theorems on analytic functions in an annulus”, J. Math. Soc. Japan, 10:4 (1958), 348–364 | DOI | MR | Zbl

[8] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd-vo Kubanskogo un-ta, Krasnodar, 1980

[9] H. Kloke, “Some inequalities for the capacity of plane condensers”, Results in Math., 9:1–2 (1986), 82–94 | DOI | MR | Zbl

[10] D. Betsakos, “Geometric versions of Schwarz's lemma for quasiregular mappings”, Proc. Amer. Math. Soc. (to appear)

[11] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Novosibirsk, 1982 | MR

[12] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei”, Dokl. AN SSSR, 157:2 (1964), 268–270 | Zbl

[13] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. mat. zhurn., 17:4 (1965), 46–54 | MR | Zbl

[14] T. H. MacGregor, “Length and area estimates for analytic functions”, Michigan Math. J., 11:4 (1964), 317–320 | DOI | MR | Zbl

[15] M. Marcus, “Transformations of domains in the plane and applications in the theory of functions”, Pacific J. Math., 14:2 (1964), 613–626 | DOI | MR | Zbl

[16] G. M. Goluzin, “Nekotorye teoremy pokrytiya dlya funktsii, regulyarnykh v kruge”, Mat. sb., 2(44):3 (1937), 617–619 | Zbl

[17] A. F. Bermant, “O nekotorykh obobscheniyakh printsipa E. Lendelefa i ikh primeneniyakh”, Mat. sb., 20(62):1 (1947), 55–112 | MR | Zbl

[18] A. Yu. Solynin, “A Schwarz lemma for meromorphic functions and estimates for the hyperbolic metric”, Proc. Amer. Math. Soc., 136:9 (2008), 3133–3143 | DOI | MR | Zbl

[19] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[20] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962

[21] V. N. Dubinin, “K teoremam iskazheniya v teorii konformnykh otobrazhenii”, Mat. zametki, 44:3 (1988), 341–351 | MR | Zbl

[22] G. K. Antonyuk, “O pokrytii ploschadei dlya funktsii, regulyarnykh v koltse”, Vestnik LGU, ser. matem., mekhan. i astr., 1958, no. 1, 45–65 | MR | Zbl