Geometric versions of Schwarz lemma and symmetrization
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 63-76

Voir la notice de l'article provenant de la source Math-Net.Ru

Connection between the geometric versions of Schwarz lemma and the known symmetrization principles for some classes of analytic functions in a disk and a circular ring are discussed. In particular, simple proofs based on classical approaches are presented for some resent results of other authors. Bibl. 22 titles.
@article{ZNSL_2010_383_a3,
     author = {V. N. Dubinin},
     title = {Geometric versions of {Schwarz} lemma and symmetrization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--76},
     publisher = {mathdoc},
     volume = {383},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Geometric versions of Schwarz lemma and symmetrization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 63
EP  - 76
VL  - 383
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/
LA  - ru
ID  - ZNSL_2010_383_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Geometric versions of Schwarz lemma and symmetrization
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 63-76
%V 383
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/
%G ru
%F ZNSL_2010_383_a3
V. N. Dubinin. Geometric versions of Schwarz lemma and symmetrization. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 63-76. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a3/