On the distribution of integral points on cones
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 193-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $r_k(n)$ denote the number of representations of a positive integer $n$ as the sum of $k$ squares. We prove that $$ \sum_{n\le x}r^2_3(n)=Cx^2+O\Big(x^\frac32\big(\log x\big)^\frac72\Big), $$ where $C>0$ is a certain constant, and that $$ \sum_{n\le x}r^2_4(n)=32\zeta(3)x^3+O\Big(x^2\big(\log x\big)^\frac53\Big). $$ Bibl. 14 titles.
@article{ZNSL_2010_383_a12,
     author = {O. M. Fomenko},
     title = {On the distribution of integral points on cones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--203},
     year = {2010},
     volume = {383},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the distribution of integral points on cones
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 193
EP  - 203
VL  - 383
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/
LA  - ru
ID  - ZNSL_2010_383_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the distribution of integral points on cones
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 193-203
%V 383
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/
%G ru
%F ZNSL_2010_383_a12
O. M. Fomenko. On the distribution of integral points on cones. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 193-203. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/

[1] O. M. Fomenko, “Raspredelenie tselykh tochek na nekotorykh poverkhnostyakh vtorogo poryadka”, Zap. nauchn. semin. POMI, 212, 1994, 164–195 | MR | Zbl

[2] M. Kühleitner, W. G. Nowak, “The averange number of solutions of the Diophantine equation $U^2+V^2=W^3$ and related arithmetic functions”, Acta Math. Hungar., 104:3 (2004), 225–240 | DOI | MR | Zbl

[3] A. Schinzel, “On an analytic problem considered by Sierpiński and Ramanujan”, New trends in probability and statistics (Palanga, 1991), v. 2, VSP, Utrecht, 1992, 165–171 | MR

[4] W. Müller, “The mean square of Dirichlet series associated with automorphic forms”, Monatsh. Math., 113:2 (1992), 121–159 | DOI | MR | Zbl

[5] W. Müller, “The Rankin–Selberg method for non-holomorphic automorphic forms”, J. Number Theory, 51:1 (1995), 48–86 | DOI | MR | Zbl

[6] Khua Lo-gen, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, M., 1964

[7] P. T. Bateman, “On the representations of a number as the sum of three squares”, Trans. Amer. Math. Soc., 71:1 (1951), 70–101 | DOI | MR | Zbl

[8] O. Saparniyazov, A. S. Fainleib, “Dispersiya summ deistvitelnykh kharakterov i momenty $L(1,\chi)$”, Izvestiya AN Uzb.SSR. Seriya fiz.-mat. nauk, 1975, no. 6, 24–29 | Zbl

[9] M. Jutila, “On character sums and class numbers”, J. Number Theory, 5:3 (1973), 203–214 | DOI | MR | Zbl

[10] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Lect. Notes Math., 899, 1981, 148–165 | DOI | MR | Zbl

[11] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR | Zbl

[12] S. Ramanujan, “Some formulae in the analytic theory of numbers”, Messenger Math., 45 (1916), 81–84

[13] R. A. Smith, “An error term of Ramanujan”, J. Number Theory, 2:1 (1970), 91–96 | DOI | MR | Zbl

[14] A. Z. Valfish, Tselye tochki v mnogomernykh sharakh, Tbilisi, 1960 | MR