On the distribution of integral points on cones
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 193-203

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $r_k(n)$ denote the number of representations of a positive integer $n$ as the sum of $k$ squares. We prove that $$ \sum_{n\le x}r^2_3(n)=Cx^2+O\Big(x^\frac32\big(\log x\big)^\frac72\Big), $$ where $C>0$ is a certain constant, and that $$ \sum_{n\le x}r^2_4(n)=32\zeta(3)x^3+O\Big(x^2\big(\log x\big)^\frac53\Big). $$ Bibl. 14 titles.
@article{ZNSL_2010_383_a12,
     author = {O. M. Fomenko},
     title = {On the distribution of integral points on cones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {383},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the distribution of integral points on cones
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 193
EP  - 203
VL  - 383
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/
LA  - ru
ID  - ZNSL_2010_383_a12
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the distribution of integral points on cones
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 193-203
%V 383
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/
%G ru
%F ZNSL_2010_383_a12
O. M. Fomenko. On the distribution of integral points on cones. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 193-203. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/