On the distribution of integral points on cones
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 193-203
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $r_k(n)$ denote the number of representations of a positive integer $n$ as the sum of $k$ squares. We prove that
$$
\sum_{n\le x}r^2_3(n)=Cx^2+O\Big(x^\frac32\big(\log x\big)^\frac72\Big),
$$
where $C>0$ is a certain constant, and that
$$
\sum_{n\le x}r^2_4(n)=32\zeta(3)x^3+O\Big(x^2\big(\log x\big)^\frac53\Big).
$$
Bibl. 14 titles.
@article{ZNSL_2010_383_a12,
author = {O. M. Fomenko},
title = {On the distribution of integral points on cones},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--203},
publisher = {mathdoc},
volume = {383},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/}
}
O. M. Fomenko. On the distribution of integral points on cones. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 193-203. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a12/