Fractional moments of automorphic $L$-functions. II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 179-192
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $\varkappa\ge12$ for $\mathrm{SL}(2,\mathbb Z)$. We consider the automorphic $L$-functions $L(s,f)$ (Hecke's $L$-function of $f$) and $L(s,\mathrm{sym}^2f)$ (Shimura's symmetric square $L$-function of $f$). Under the Riemann hypothesis for $L(s,\mathrm{sym}^2f)$, we prove the following asymptotic formula as $T\to\infty$ $$ \int^T_1\big|L(\sigma+it,\mathrm{sym}^2f)\big|^{2k}\,dt=C\cdot T+O\left(T^{1-(2\sigma-1)/\{2(3-2\sigma)\}+\varepsilon}\right), $$ where $k>0$ and $\frac12<\sigma<1$. We obtain an analogous result for $L(s,f)$ conditionally and the asymptotics $$ \int^T_1\big|L(\sigma+it,f)\big|^{2k}\,dt\sim C_1\cdot T,\qquad0<k<1, $$ unconditionally. Bibl. 11 titles.
@article{ZNSL_2010_383_a11,
     author = {O. M. Fomenko},
     title = {Fractional moments of automorphic $L${-functions.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--192},
     year = {2010},
     volume = {383},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Fractional moments of automorphic $L$-functions. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 179
EP  - 192
VL  - 383
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/
LA  - ru
ID  - ZNSL_2010_383_a11
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Fractional moments of automorphic $L$-functions. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 179-192
%V 383
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/
%G ru
%F ZNSL_2010_383_a11
O. M. Fomenko. Fractional moments of automorphic $L$-functions. II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 179-192. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/

[1] D. R. Heath-Brown, “Fractional moments of the Riemann zeta-function”, J. London Math. Soc. (2), 24 (1981), 65–78 | DOI | MR | Zbl

[2] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR | Zbl

[3] R. T. Turganaliev, “Asimptoticheskaya formula dlya srednikh znachenii drobnoi stepeni dzeta-funktsii Rimana”, Trudy Mat. inst-ta AN SSSR, 158, 1981, 203–226 | MR | Zbl

[4] I. Sh. Dzhabbarov, “Drobnye momenty $\zeta$-funktsii”, Mat. zametki, 38:4 (1985), 481–493 | MR | Zbl

[5] A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helv., 50 (1975), 327–361 | DOI | MR | Zbl

[6] E. Titchmarsh, Teoriya funktsii, M.–L., 1951

[7] E. Titchmarsh, Dzeta-funktsiya Rimana, M., 1947

[8] G. Montgomeri, Multiplikativnaya teoriya chisel, M., 1974

[9] H. L. Montgomery, R. C. Vaughan, “Hilbert's inequality”, J. London Math. Soc. (2), 8 (1974), 73–82 | DOI | MR | Zbl

[10] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, M., 1948

[11] O. M. Fomenko, “Drobnye momenty avtomorfnykh $L$-funktsii”, Algebra i analiz, 22:2 (2010), 204–224 | MR