Fractional moments of automorphic $L$-functions.~II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 179-192
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $\varkappa\ge12$ for $\mathrm{SL}(2,\mathbb Z)$. We consider the automorphic $L$-functions $L(s,f)$ (Hecke's $L$-function of $f$) and $L(s,\mathrm{sym}^2f)$ (Shimura's symmetric square $L$-function of $f$). Under the Riemann hypothesis for
$L(s,\mathrm{sym}^2f)$, we prove the following asymptotic formula as $T\to\infty$
$$
\int^T_1\big|L(\sigma+it,\mathrm{sym}^2f)\big|^{2k}\,dt=C\cdot T+O\left(T^{1-(2\sigma-1)/\{2(3-2\sigma)\}+\varepsilon}\right),
$$
where $k>0$ and $\frac12\sigma1$.
We obtain an analogous result for $L(s,f)$ conditionally and the asymptotics
$$
\int^T_1\big|L(\sigma+it,f)\big|^{2k}\,dt\sim C_1\cdot T,\qquad01,
$$
unconditionally. Bibl. 11 titles.
@article{ZNSL_2010_383_a11,
author = {O. M. Fomenko},
title = {Fractional moments of automorphic $L${-functions.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--192},
publisher = {mathdoc},
volume = {383},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/}
}
O. M. Fomenko. Fractional moments of automorphic $L$-functions.~II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 179-192. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/