Fractional moments of automorphic $L$-functions.~II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 179-192

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $\varkappa\ge12$ for $\mathrm{SL}(2,\mathbb Z)$. We consider the automorphic $L$-functions $L(s,f)$ (Hecke's $L$-function of $f$) and $L(s,\mathrm{sym}^2f)$ (Shimura's symmetric square $L$-function of $f$). Under the Riemann hypothesis for $L(s,\mathrm{sym}^2f)$, we prove the following asymptotic formula as $T\to\infty$ $$ \int^T_1\big|L(\sigma+it,\mathrm{sym}^2f)\big|^{2k}\,dt=C\cdot T+O\left(T^{1-(2\sigma-1)/\{2(3-2\sigma)\}+\varepsilon}\right), $$ where $k>0$ and $\frac12\sigma1$. We obtain an analogous result for $L(s,f)$ conditionally and the asymptotics $$ \int^T_1\big|L(\sigma+it,f)\big|^{2k}\,dt\sim C_1\cdot T,\qquad01, $$ unconditionally. Bibl. 11 titles.
@article{ZNSL_2010_383_a11,
     author = {O. M. Fomenko},
     title = {Fractional moments of automorphic $L${-functions.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--192},
     publisher = {mathdoc},
     volume = {383},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Fractional moments of automorphic $L$-functions.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 179
EP  - 192
VL  - 383
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/
LA  - ru
ID  - ZNSL_2010_383_a11
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Fractional moments of automorphic $L$-functions.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 179-192
%V 383
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/
%G ru
%F ZNSL_2010_383_a11
O. M. Fomenko. Fractional moments of automorphic $L$-functions.~II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 179-192. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a11/