Generalized capacities and polyhedral surfaces
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 148-178
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we apply the theory of extremal length of vector measures to establish that the generalized condenser capacity in the sense of Aikawa and Ohtsuka is related to the module of a family of surfaces separating the condenser's plates and no intersecting prescribed set. We prove that the system of the polyhedral surfaces from the above family is sufficient to approximate the module of this family. Bibl. 17 titles.
@article{ZNSL_2010_383_a10,
     author = {P. A. Pugach and V. A. Shlyk},
     title = {Generalized capacities and polyhedral surfaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--178},
     year = {2010},
     volume = {383},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a10/}
}
TY  - JOUR
AU  - P. A. Pugach
AU  - V. A. Shlyk
TI  - Generalized capacities and polyhedral surfaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 148
EP  - 178
VL  - 383
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a10/
LA  - ru
ID  - ZNSL_2010_383_a10
ER  - 
%0 Journal Article
%A P. A. Pugach
%A V. A. Shlyk
%T Generalized capacities and polyhedral surfaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 148-178
%V 383
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a10/
%G ru
%F ZNSL_2010_383_a10
P. A. Pugach; V. A. Shlyk. Generalized capacities and polyhedral surfaces. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 25, Tome 383 (2010), pp. 148-178. http://geodesic.mathdoc.fr/item/ZNSL_2010_383_a10/

[1] H. Aikawa, M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24 (1999), 61–88 | MR | Zbl

[2] V. A. Shlyk, “Emkost kondensatora i modul semeistva razdelyayuschikh poverkhnostei”, Zap. nauchn. semin. LOMI, 185, 1990, 168–182 | MR | Zbl

[3] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal functions”, Trans. Amer. Math. Soc., 192 (1972), 207–226 | DOI | MR

[4] I. N. Dëmshin, V. A. Shlyk, “Kriterii ustranimykh mnozhestv dlya prostranstv $L^1_{p,w}$, $FD^{p,w}$”, Dokl. RAN, 343:5 (1995), 550–552 | MR

[5] M. Ohtsuka, “Extremal length and precise functions”, GAKUTO International Journal, Advances in Math. Sciences and Appl., 19 (2003), 1–343 | MR

[6] E. Dzhusti, Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, M., 1989 | MR

[7] V. G. Mazya, Prostranstva S. L. Soboleva, L., 1985 | MR | Zbl

[8] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Novosibirsk, 2002

[9] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl

[10] B. Fuglede, “Extremal length and functional completion”, Acta Math., 126:3 (1957), 171–219 | DOI | MR

[11] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, M., 1979 | MR

[12] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, M., 1983 | MR

[13] N. Burbaki, Integrirovanie. Vektornoe integrirovanie. Mera Khaara, Nauka, M., 1970 | MR

[14] E. Lib, M. Loss, Analiz, Novosibirsk, 1998

[15] V. M. Miklyukov, Vvedenie v negladkii analiz, Izd-vo VolGU, Volgograd, 2008

[16] V. V. Aseev, “$NED$-mnozhestva, lezhaschie v giperploskosti”, Sib. mat. zh., 50:5 (2009), 967–986 | MR | Zbl

[17] H. Federer, W. H. Fleming, “Normal and integral currents”, Ann. Math., 72 (1960), 458–520 | DOI | MR | Zbl